

PineAPPL Grids of Open Heavy-Flavor Production in the GM-VFNS

Deep-Inelastic Scattering 2024

Jan Wissmann

9th of April, 2024

Introduction

Process: Open heavy-quark hadroproduction

in collinear factorization:

$$\mathrm{d}\sigma = f_{i/A} \ \otimes \ f_{j/B} \ \otimes \ \mathrm{d}\hat{\sigma}_{ij \to k} \ \otimes \ d_{C/k}$$

Light quarks q: u, d, s, heavy quarks Q: c, b

 \to heavy on the absolute QCD scale: $m_Q \gg \Lambda_{\rm QCD}$ so that the process is calculable perturbatively, i.e. $\alpha_{\rm s}(m_Q) \ll 1$

- Importance of heavy-quark production: data goes to small momentum-fraction $x \approx \frac{p_T}{\sqrt{s}} e^{y} \sim 10^{-5}$ \rightarrow e.g. constrain gluon PDF in low-x region
- Mass effects non-negligible for $p_{T} \sim m_{Q}$
- Theory predictions for this process: GM-VFNS (NLO)

Flavor-number schemes

In all processes with heavy quarks: new scale m_Q

threshold region

 $p_{\rm T} \sim m_{\rm Q}$

FFNS

Fixed flavor-number scheme

- Heavy quark treated as massive particle, lighter quarks as massless partons
- Fixed number of light flavors
- Non-zero mass acts as regulator

asymptotic region $p_T \gg m_O \qquad p_T$

ZM-VFNS

Zero-mass variable-flavor-number scheme

- Heavy quarks treated as massless partons
- Number of light flavors is scale-dependent: Contributions from new flavors activate dynamically at their respective mass thresholds
- Collinear singularities due to massless quarks renormalized in the usual $\overline{\text{MS}}$

The General-Mass Variable-Flavor-Number Scheme (GM-VFNS)

Expectation:

$$d\sigma_{FFNS} \xrightarrow{p_T \gg m_Q} d\sigma_{ZM-VFNS}$$
 ?

 $\rightarrow p_T \gg m_Q$ (i.e. $m_Q \rightarrow 0$) limit and subtraction of collinear singularities are not exchangeable

Solution: GM-VFNS:

$$d\sigma_{\text{FFNS}} \xleftarrow{m_{Q} \leftarrow p_{T}} d\sigma_{\text{GM-VFNS}} \xrightarrow{p_{T} \gg m_{Q}} d\sigma_{\text{ZM-VFNS}}$$

For intermediate p_T , the GM-VFNS interpolates between the ZM-VFNS and the FFNS.

Gridding with PineAPPL

For theoretical predictions obtained with a Monte Carlo (MC) generator:

Problem:

- A-posteriori variation of α_s, scales and PDFs requires running the MC generator again each time (usually multiple hours per run)
- Same calculation of the hard-scattering matrix elements is performed every time

Solution:

- Pre-calculate the MC weights and store them in an interpolation "grid" independent of the PDFs, α_s and possibly scales
- $\rightarrow\,$ Done by libraries such as
 - APPLgrid [0911.2985]
 FastNLO [hep-ph/0609285]
 PineAPPL [2009.03987]

Gridding with PineAPPL II

Gridding libraries store the MC weights of fixed-order calculations by interpolating the PDFs:

(analogous for α_{s} and scales) Lagrange interpolation basis functions

1. Gridding Stage

Build grid by integrating over the basis functions:

$$\mathrm{d}\sigma_i = \int \mathrm{d}x \, L_i(x) \, \mathrm{d}\hat{\sigma}(x)$$

- In practice: Fill the grid with the MC weights, obtain grid file
- \rightarrow Takes multiple CPU hours, but only done once

2. Convolution Stage

Obtain predictions by performing the convolution with the PDF:

$$d\sigma = \sum_{i} f_{i} d\sigma_{i}$$

 $\rightarrow~\sim$ Instantaneous, can be done multiple times for different PDFs and scales

Gridding GM-VFNS heavy-quark hadroproduction

- The NLO GM-VFNS calculation in heavy-quark hadroproduction exists as Fortran code by B. A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger [hep-ph/0502194] [hep-ph/0502194]
- Our work: Extending the existing code to produce PineAPPL grids and writing a Python interface to the code to make it publication-ready

NEW: produced NLO GM-VFNS predictions as PineAPPL grids

One grid, corresponding to one experimental dataset, includes cross-sections...

- b double-differential in (p_T, y) corresponding to the bins of the experimental data
- > at LO (α_s^2) and NLO (α_s^3)
- with the FF baked-in (Since PineAPPL allows up to two different convolutions at the moment)
- $\rightarrow\,$ both PDFs and α_s can be varied a-posteriori, e.g. for PDF uncertainties or fits

PLANNED:

- Using these grids for nCTEQ PDF analyses in the future
- Publication of the grids and this version of the GM-VFNS code

Data taken into account so far – ALICE

Predictions and grids already produced for:

Experiment	arXiv	Initial State	Meson
ALICE	1111.1553	p+p	D ⁰
	1405.3452	p + Pb	D^0
			D^+
	1605.07569	p+p	D^0
		p + Pb	D^+
	1702.00766	p + Pb	D^0
	1901.07979	p+p	D^0
	1906.03425	p + Pb	D^+
			D_{s}^{+}
			D*+
	2106.08278	p + p	D ⁰

Fragmentation functions:

D ⁰ , D ⁺ , D ^{*+} :	KKKS08	[0712.0481]
D _s +:	BKK06_D	[hep-ph/0607306]
B+:	BKK06_B	[0712.0481]

Data taken into account so far – LHCb & CMS

Predictions and grids already produced for:

Experiment	arXiv	Initial State	Meson
CMS	1508.06678	p + Pb	B ⁺
LHCb	1302.2864	р+р	D^0
	1510.01707	р+р	D^0
	1610.02230	р+р	D^0
	1707.02750	p + Pb	D^0
	2205.03936	p + Pb	D^0

Fragmentation functions:

D ⁰ , D ⁺ , D ^{*+} :	KKKS08	[0712.0481]
D_{s}^{+}:	BKK06_D	[hep-ph/0607306]
B+:	BKK06_B	[0712.0481]

Results I – Prediction vs. Grid

Sub-permille agreement
 Shown here: Statistical (MC) errors

 Grid precision independent of run settings and phase space region

Results II - Prediction vs. Data

Next slides: Some examples of the predictions

Results II - Prediction vs. Data

7-point (ξ_r, ξ_f) scale-variation where μ_i = ξ_i √p_T² + 4m_Q² and ξ_i ∈ {0.5, 1, 2}
 Previous work by the GM-VFNS authors: Scale choice improves agreement and improves predictions at lower p_T

Results II - Prediction vs. Data

- ► 7-point (ξ_r, ξ_f) scale-variation where $\mu_i = \xi_i \sqrt{p_T^2 + 4m_Q^2}$ and $\xi_i \in \{0.5, 1, 2\}$
- Previous work by the GM-VFNS authors: Scale choice improves agreement and enables meaningful predictions at lower p_T

Results II – Prediction vs. Data

- ► 7-point (ξ_r, ξ_f) scale-variation where $\mu_i = \xi_i \sqrt{p_T^2 + 4m_Q^2}$ and $\xi_i \in \{0.5, 1, 2\}$
- Previous work by the GM-VFNS authors: Scale choice improves agreement and enables meaningful predictions at lower p_T

Results III – Fragmentation Scale

 $\mathrm{d}\sigma = f_{i/A}(\mu_{\mathrm{f}}) \, \otimes \, f_{j/B}(\mu_{\mathrm{f}}) \, \otimes \, \mathrm{d}\hat{\sigma}_{ij \, \rightarrow \, k}(\mu_{\mathrm{r}}) \, \otimes \, d_{C/k}(\mu_{\mathrm{ff}})$

► 7-point (ξ_r, ξ_f) scale-variation where $\mu_i = \xi_i \sqrt{p_T^2 + 4m_Q^2}$ and $\xi_i \in \{0.5, 1, 2\}$

Previous work by the GM-VFNS authors: Tuned scales improve agreement and enable meaningful predictions at lower p_T

Results IV – PDF Uncertainties

Total number of PDF members: 342

► Here: Gridding reduces execution time by factor 342 → impossible without gridding

Results IV – PDF Uncertainties

- Total number of PDF members: 347
- ► Here: Gridding reduces execution time by factor 347 → impossible without gridding

Conclusion

- The GM-VFNS gives the heavy-quark production prediction for a bigger kinematic range
- Gridding libraries like PineAPPL allow varying the PDFs and scales a-posteriori in a very efficient way
- The GM-VFNS prediction and the produced grids agree by less than one per-mille
- This version of the GM-VFNS code and the PineAPPL grids will be published

Backup

Grid interpolation – Details

The MC generator generates events with weights W_m corresponding to points (x_{1m}, x_{2m}, Q_m^2) :

$$d\sigma = \sum_{i,j} \int dx_1 dx_2 dQ^2 f_i(x_1) f_j(x_2) d\hat{\sigma}_{ij}$$

=
$$\sum_{i,j,m,n} f_i(x_{1m}, Q_m^2) f_j(x_{2m}, Q_m^2) \alpha_s^{p_n}(Q_m^2) W_{m,ij}^{(n)}$$
(1)

Precalculating the weights would let us perform the convolution at a later stage
 → We can store the weights W_m for each histogram bin in a lookup table (grid) together with the points (x_{1m}, x_{2m}, Q²_m)

To make this space efficient, we Lagrange-interpolate between grid points in a transformed (x_1, x_2, Q^2) -space