

Dijet photoproduction and transverse-plane geometry in ultra-peripheral nuclear collisions

Petja Paakkinen

in collab. with K. J. Eskola, V. Guzey, I. Helenius & H. Paukkunen

University of Jyväskylä

DIS 2024 10 April 2024

Centre of Excellence in Quark Matter

HELSINKI INSTITUTE OF PHYSICS

UPCs as probes of nuclei

In ultra-peripheral heavy-ion collisions (UPCs), two nuclei pass each other at an impact parameter larger than the sum of their radii

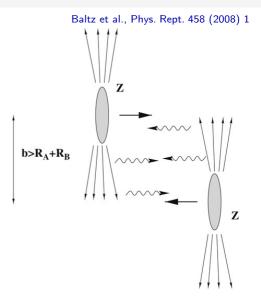
→ hadronic interactions suppressed

Hard interactions of one nucleus with the e.m. field of the other can be described in equivalent photon approximation

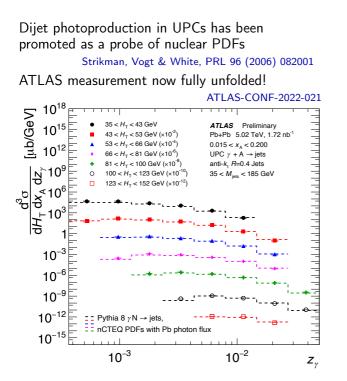
 \rightarrow access to photo-nuclear processes

A "new" way to probe nuclear contents!

Bertulani, Klein & Nystrand, Ann. Rev. Nucl. Part. Sci. 55 (2005) 271 Baltz et al., Phys. Rept. 458 (2008) 1 Contreras & Tapia Takaki, Int. J. Mod. Phys. A 30 (2015) 1542012 Klein & Mäntysaari, Nature Rev. Phys. 1 (2019) 662



Inclusive dijets in UPCs



Guzey & Klasen, PRC 99 (2019) 065202 direct: resolved: A A Remnant Jet .Let

Jet

Triple differential in

A

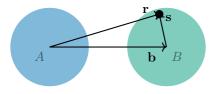
B

$$H_{\rm T} = \sum_{i \in \text{jets}} p_{{\rm T},i}, \quad z_{\gamma} = \frac{M_{\rm jets}}{\sqrt{s_{\rm NN}}} e^{+y_{\rm jets}},$$
$$x_A = \frac{M_{\rm jets}}{\sqrt{s_{\rm NN}}} e^{-y_{\rm jets}}$$

Previous NLO predictions have been performed in a pointlike approximation

 \rightarrow Can/should we do better?

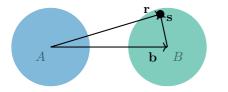
.Jet



We use an impact-parameter dependent factorization similar to Baron & Baur, PRC 48 (1993) 1999 Greiner et al., PRC 51 (1995) 911

The inclusive UPC dijet cross section can be written as:

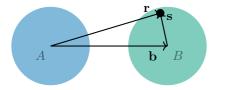
$$d\sigma^{AB \to A + \text{dijet} + X} = \sum_{i,j,X'} \int d^2 \mathbf{b} \, \Gamma_{AB}(\mathbf{b}) \int d^2 \mathbf{r} \, f_{\gamma/A}(y,\mathbf{r}) \otimes f_{i/\gamma}(x_{\gamma},Q^2)$$
$$\otimes \int d^2 \mathbf{s} \, f_{j/B}(x,Q^2,\mathbf{s}) \otimes d\hat{\sigma}^{ij \to \text{dijet} + X'} \delta(\mathbf{r} - \mathbf{s} - \mathbf{b})$$



We use an impact-parameter dependent factorization similar to Baron & Baur, PRC 48 (1993) 1999 Greiner et al., PRC 51 (1995) 911

Survival factor: Probability for having no hadronic interaction at impact parameter **b**

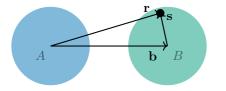
$$d\sigma^{AB \to A + \text{dijet} + X} = \sum_{i,j,X'} \int d^2 \mathbf{b} \Gamma_{AB}(\mathbf{b}) \int d^2 \mathbf{r} f_{\gamma/A}(y,\mathbf{r}) \otimes f_{i/\gamma}(x_{\gamma},Q^2)$$
$$\otimes \int d^2 \mathbf{s} f_{j/B}(x,Q^2,\mathbf{s}) \otimes d\hat{\sigma}^{ij \to \text{dijet} + X'} \delta(\mathbf{r} - \mathbf{s} - \mathbf{b})$$



We use an impact-parameter dependent factorization similar to Baron & Baur, PRC 48 (1993) 1999 Greiner et al., PRC 51 (1995) 911

> Photon flux: The number of photons at radius **r** from the emitting nucleus

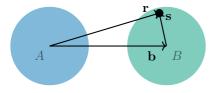
$$d\sigma^{AB \to A + \text{dijet} + X} = \sum_{i,j,X'} \int d^2 \mathbf{b} \, \Gamma_{AB}(\mathbf{b}) \int d^2 \mathbf{r} \, f_{\gamma/A}(y,\mathbf{r}) \otimes f_{i/\gamma}(x_{\gamma},Q^2)$$
$$\otimes \int d^2 \mathbf{s} \, f_{j/B}(x,Q^2,\mathbf{s}) \otimes d\hat{\sigma}^{ij \to \text{dijet} + X'} \delta(\mathbf{r} - \mathbf{s} - \mathbf{b})$$



We use an impact-parameter dependent factorization similar to Baron & Baur, PRC 48 (1993) 1999 Greiner et al., PRC 51 (1995) 911

Photon PDF: Density of partons type i within the photon

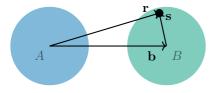
$$d\sigma^{AB \to A + \text{dijet} + X} = \sum_{i,j,X'} \int d^2 \mathbf{b} \Gamma_{AB}(\mathbf{b}) \int d^2 \mathbf{r} f_{\gamma/A}(y,\mathbf{r}) \otimes f_{i/\gamma}(x_{\gamma},Q^2)$$
$$\otimes \int d^2 \mathbf{s} f_{j/B}(x,Q^2,\mathbf{s}) \otimes d\hat{\sigma}^{ij \to \text{dijet} + X'} \delta(\mathbf{r} - \mathbf{s} - \mathbf{b})$$



We use an impact-parameter dependent factorization similar to Baron & Baur, PRC 48 (1993) 1999 Greiner et al., PRC 51 (1995) 911

$$d\sigma^{AB \to A + \text{dijet} + X} = \sum_{i,j,X'} \int d^2 \mathbf{b} \Gamma_{AB}(\mathbf{b}) \int d^2 \mathbf{r} f_{\gamma/A}(y, \mathbf{r}) \otimes f_{i/\gamma}(x_{\gamma}, Q^2)$$
$$\otimes \int d^2 \mathbf{s} f_{j/B}(x, Q^2, \mathbf{s}) \otimes d\hat{\sigma}^{ij \to \text{dijet} + X'} \delta(\mathbf{r} - \mathbf{s} - \mathbf{b})$$

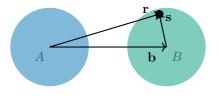
Nuclear PDF: Density of partons type j within the nucleus at distance s from the center



We use an impact-parameter dependent factorization similar to Baron & Baur, PRC 48 (1993) 1999 Greiner et al., PRC 51 (1995) 911

$$d\sigma^{AB \to A + \text{dijet} + X} = \sum_{i,j,X'} \int d^2 \mathbf{b} \Gamma_{AB}(\mathbf{b}) \int d^2 \mathbf{r} f_{\gamma/A}(y,\mathbf{r}) \otimes f_{i/\gamma}(x_{\gamma},Q^2)$$
$$\otimes \int d^2 \mathbf{s} f_{j/B}(x,Q^2,\mathbf{s}) \otimes d\hat{\sigma}^{ij \to \text{dijet} + X'} \delta(\mathbf{r} - \mathbf{s} - \mathbf{b})$$
$$\uparrow$$
Partonic cross section (NLO pQCD):
Production rate for the dijet system from partons *i* and *j*

Frixione & Ridolfi, NPB 507 (1997) 315



We use an impact-parameter dependent factorization similar to Baron & Baur, PRC 48 (1993) 1999 Greiner et al., PRC 51 (1995) 911

$$\begin{split} \mathrm{d}\sigma^{AB\to A+\mathrm{dijet}+X} &= \sum_{i,j,X'} \int \mathrm{d}^2 \mathbf{b} \, \Gamma_{AB}(\mathbf{b}) \int \mathrm{d}^2 \mathbf{r} \, f_{\gamma/A}(y,\mathbf{r}) \otimes f_{i/\gamma}(x_{\gamma},Q^2) \\ &\otimes \int \mathrm{d}^2 \mathbf{s} \, f_{j/B}(x,Q^2,\mathbf{s}) \otimes \mathrm{d}\hat{\sigma}^{ij\to\mathrm{dijet}+X'} \delta(\mathbf{r}\!-\!\mathbf{s}\!-\!\mathbf{b}) \end{split}$$

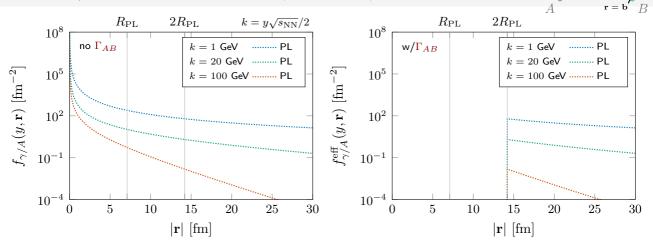
Now, if $f_{j/B}(x,Q^2,\mathbf{s}) = \frac{1}{B}T_B(\mathbf{s}) \times f_{j/B}(x,Q^2)$, we can write

$$\mathrm{d}\sigma^{AB\to A+\mathrm{dijet}+X} = \sum_{i,j,X'} f_{\gamma/A}^{\mathrm{eff}}(y) \otimes f_{i/\gamma}(x_{\gamma},Q^2) \otimes f_{j/B}(x,Q^2) \otimes \mathrm{d}\hat{\sigma}^{ij\to\mathrm{dijet}+X'}$$

where the effective photon flux reads

 $f_{\gamma/A}^{\text{eff}}(y) = \frac{1}{B} \int d^2 \mathbf{r} \int d^2 \mathbf{s} f_{\gamma/A}(y, \mathbf{r}) T_B(\mathbf{s}) \Gamma_{AB}(\mathbf{r} - \mathbf{s}) \qquad \text{as in ATLAS-CONF-2022-021 (see Appendix A)}$

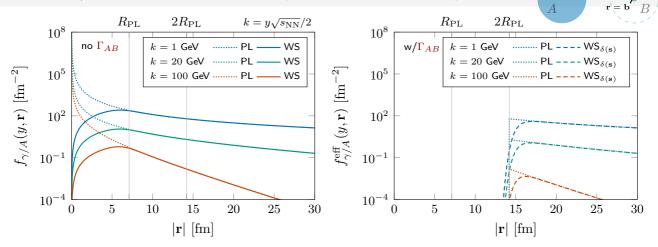
Effective photon flux in UPC PbPb (1: PL approx.)



 $\begin{array}{ll} \text{Pointlike (PL) approximation:} \quad T_B(\mathbf{s}) = B\delta(\mathbf{s}), \quad \Gamma_{AB}(\mathbf{b}) = \theta(|\mathbf{b}| - b_{\min}), \quad b_{\min} = 2R_{\text{PL}} = 14.2 \text{ fm} \\ \Rightarrow \quad f_{\gamma/A}^{\text{eff,PL}}(y) = \int \mathrm{d}^2 \mathbf{r} \underbrace{f_{\gamma/A}^{\text{PL}}(y, \mathbf{r})}_{=\frac{Z^2 \alpha_{\text{e.m.}}}{\pi^2}} \theta(|\mathbf{r}| - b_{\min}) = \frac{2Z^2 \alpha_{\text{e.m.}}}{\pi y} \left[\zeta K_0(\zeta) K_1(\zeta) - \frac{\zeta^2}{2} [K_1^2(\zeta) - K_0^2(\zeta)] \right]_{\zeta = ym_p b_{\min}} \\ = \frac{Z^2 \alpha_{\text{e.m.}}}{\pi^2} m_p^2 y [K_1^2(\zeta) + \frac{1}{\gamma_L} K_0^2(\zeta)]_{\zeta = ym_p |\mathbf{r}|} \end{array}$

→ Coincides with Guzey & Klasen, PRC 99 (2019) 065202

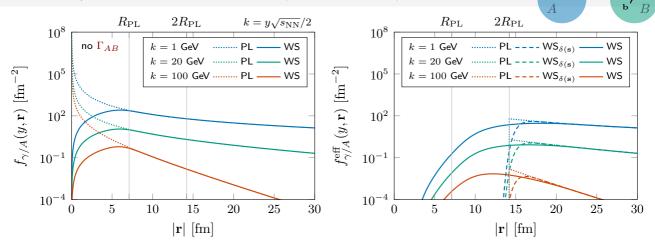
Effective photon flux in UPC PbPb (2: WS with $T_B(\mathbf{s}) = B\delta(\mathbf{s})$)



Woods-Saxon source on point-like target (WS_{$\delta(\mathbf{s})$}): $T_B(\mathbf{s}) = B\delta(\mathbf{s}), \quad \Gamma_{AB}(\mathbf{b}) = \exp[-\sigma_{NN} T_{AB}^{WS}(\mathbf{b})]$ $\Rightarrow f_{\gamma/A}^{\text{eff},WS_{\delta(\mathbf{s})}}(y) = \int d^2 \mathbf{r} \underbrace{f_{\gamma/A}^{WS}(y,\mathbf{r})}_{=\frac{Z^2 \alpha_{e.m.}}{\pi^2} \frac{1}{y}} \int_0^\infty \frac{dk_\perp k_\perp^2}{k_\perp^2 + (ym_p)^2} F^{WS}(k_\perp^2 + (ym_p)^2) J_1(|\mathbf{r}|k_\perp)|^2$

→ cf. Guzey & Zhalov, JHEP 02 (2014) 046; Zha et al., PLB 781 (2018) 182; Eskola et al., PRC 106 (2022) 035202

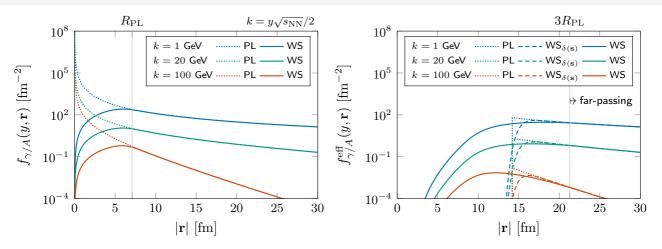
Effective photon flux in UPC PbPb (3: Full WS profile)



Woods-Saxon nuclear profile (WS): $T_B(\mathbf{s}) = \int dz \rho_B^{WS}(z, \mathbf{s}), \quad \Gamma_{AB}(\mathbf{b}) = \exp[-\sigma_{NN} T_{AB}^{WS}(\mathbf{b})]$ $\Rightarrow f_{\gamma/A}^{\text{eff},WS}(y) = \int d^2 \mathbf{r} \underbrace{f_{\gamma/A}^{WS}(y, \mathbf{r})}_{=\frac{Z^2 \alpha_{e.m.}}{\pi^2} \frac{1}{y}} \int_0^{\infty} \frac{dk_\perp k_\perp^2}{k_\perp^2 + (ym_p)^2} F^{WS}(k_\perp^2 + (ym_p)^2) J_1(|\mathbf{r}|k_\perp)|^2$

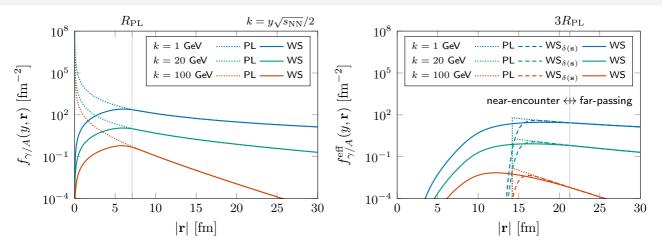
 \rightarrow Accounting for the s dependence important at small $|\mathbf{r}|!$

Effective photon flux in UPC PbPb



For the 'far-passing' events with $|\mathbf{r}| > 3R_{\rm PL}$ the PL approximation works fine. . .

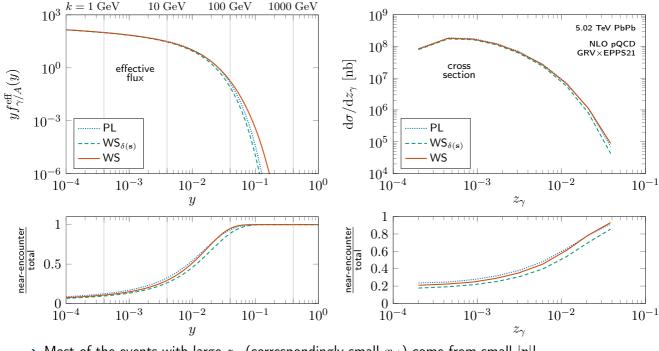
Effective photon flux in UPC PbPb



For the 'far-passing' events with $|\mathbf{r}| > 3R_{\mathrm{PL}}$ the PL approximation works fine. . .

 \ldots but producing high- $p_{\rm T}$ jets requires sufficient energy from the photon which enhances sensitivity to the 'near-encounter' region

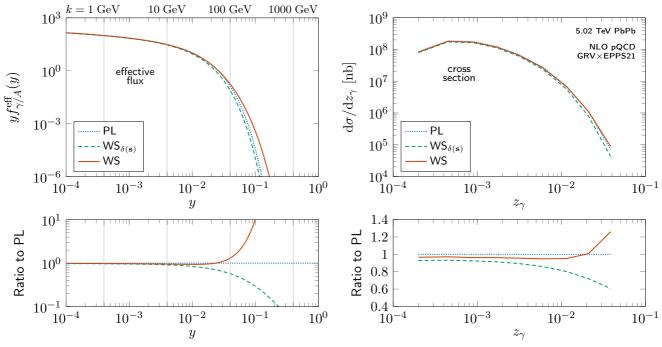
Effective photon flux and UPC dijet cross section



 \rightarrow Most of the events with large z_{γ} (correspondingly small x_A) come from small $|\mathbf{r}|!$

9/16

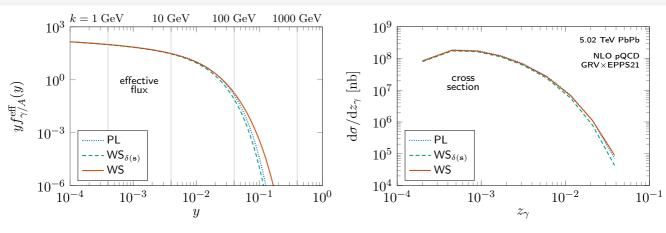
Effective photon flux and UPC dijet cross section



→ Full WS cross section larger than WS $_{\delta(s)}$ by a factor 2 in the largest z_{γ} bin

10/16

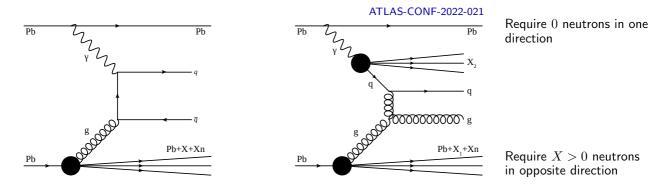
Effective photon flux and UPC dijet cross section



Note:

- All of this assumed that we can factorize $f_{j/B}(x, Q^2, \mathbf{s}) = \frac{1}{B}T_B(\mathbf{s}) \times f_{j/B}(x, Q^2)$, but this is a simplification use impact-parameter dependent nPDFs (EPS09s, FGS10) instead.
- Here we have neglected the possibility of electromagnetic breakup through Coulomb excitations; Including it would modify the $\Gamma_{AB}(\mathbf{b})$ suppression factor.
 - \rightarrow ATLAS measurement in 0nXn neutron class, must take this effect into account

Breakup-class modelling

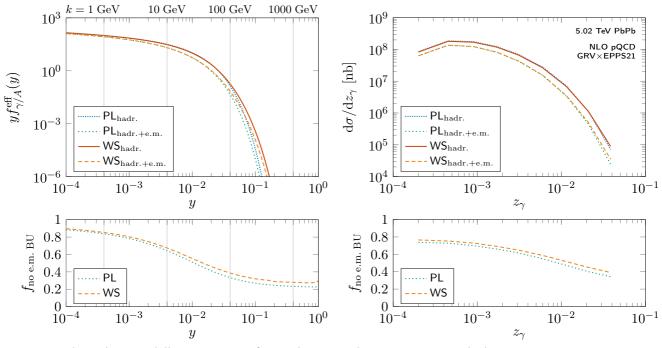


Poissonian probability for no electromagnetic breakup of nucleus A through Coulomb excitations:

$$\Gamma_{AB}^{\text{e.m.}}(\mathbf{b}) = \exp\left[-\int_{0}^{1} \mathrm{d}y \, f_{\gamma/B}(y, \mathbf{b}) \, \sigma_{\gamma A \to A^{*}}(\sqrt{y \, s_{\mathrm{NN}}})\right] \rightarrow \text{take from Starlight}$$
Baltz, Klein & Nystrand, PRL 89 (2002) 012301
Klein et al., Comput. Phys. Commun. 212 (2017) 258

The total survival factor is then $\Gamma_{AB}^{hadr.+e.m.}(\mathbf{b}) = \Gamma_{AB}^{e.m.}(\mathbf{b})\Gamma_{AB}^{hadr.}(\mathbf{b})$

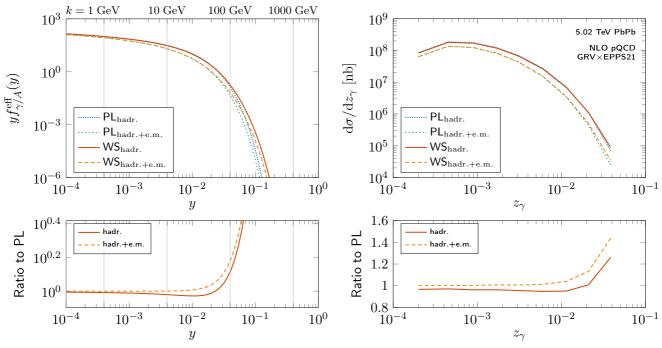
Effective photon flux and UPC dijet cross section w/ breakup classes



 \rightarrow Breakup-class modelling necessary for apples to apples comparison with data

13/16

Effective photon flux and UPC dijet cross section w/ breakup classes



→ Difference between PL and WS approximations survives after the e.m. breakup modelling

13/16

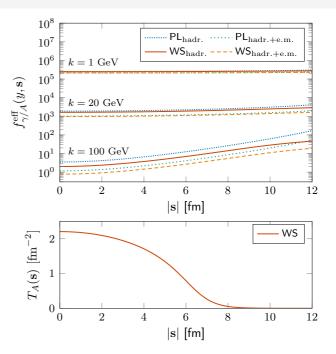
Impact-parameter dependence (revisit)

Note that it is possible to reorganise:

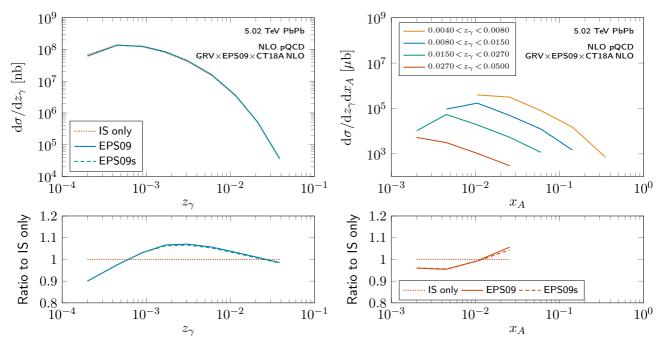
$$\begin{split} \mathrm{d}\sigma^{AB \to A + \mathrm{dijet} + X} &= \sum_{i,j,X'} \mathrm{d}\hat{\sigma}^{ij \to \mathrm{dijet} + X'} \otimes f_{i/\gamma}(x_{\gamma}, Q^{2}) \\ &\otimes \int \mathrm{d}^{2}\mathbf{s} \, f_{j/B}(x, Q^{2}, \mathbf{s}) \\ &\otimes \underbrace{\int \mathrm{d}^{2}\mathbf{r} \int \mathrm{d}^{2}\mathbf{b} \, f_{\gamma/A}(y, \mathbf{r}) \, \Gamma_{AB}(\mathbf{b}) \, \delta(\mathbf{r} - \mathbf{s} - \mathbf{b})}_{=:f_{\gamma/A}^{\mathrm{eff}}(y, \mathbf{s})} \end{split}$$

where $f^{\rm eff}_{\gamma/A}(y,{\bf s})$ sets how the nuclear partons are sampled:

- If it is constant in s over support of $f_{j/B}(x, Q^2, s)$, then one recovers ordinary non-spatial nPDFs.
- If not, then one needs to use spatially dependent nPDFs.

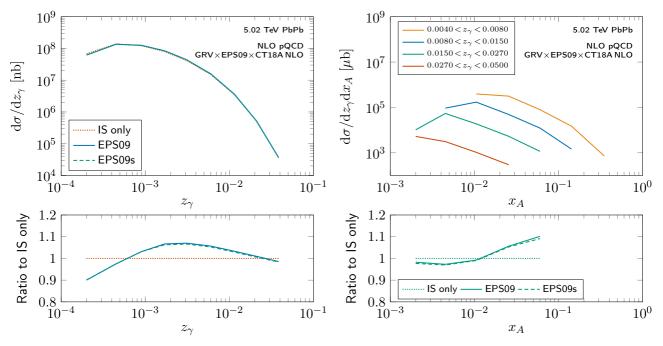


UPC dijet cross section w/ spatial dependence



→ Spatial vs. non-spatial nPDFs only a small correction

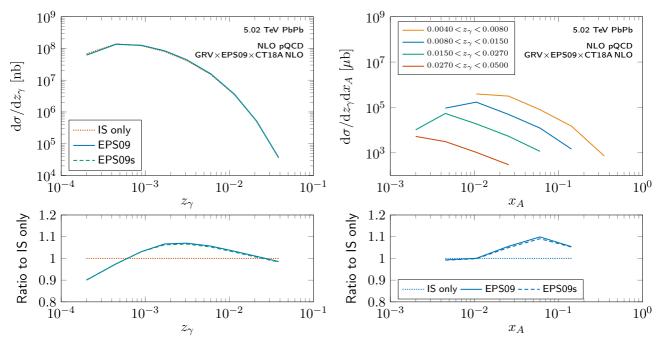
UPC dijet cross section w/ spatial dependence



 \rightarrow Spatial vs. non-spatial nPDFs only a small correction

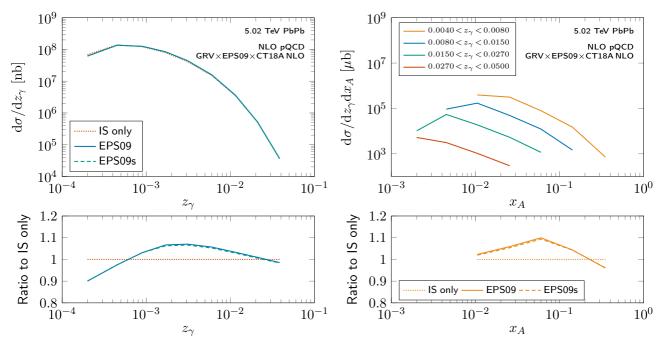
15/16

UPC dijet cross section w/ spatial dependence



 \rightarrow Spatial vs. non-spatial nPDFs only a small correction

UPC dijet cross section w/ spatial dependence



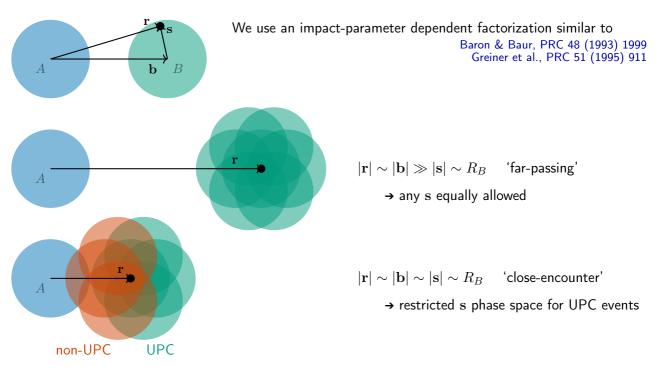
→ Spatial vs. non-spatial nPDFs only a small correction

Summary

- In principle, *inclusive* dijet photoproduction off nuclei is a good probe for nuclear PDFs
- However, in UPCs impact-parameter space is restricted due to requirement of no nuclear overlap
- Due to requiring the production of high- $p_{\rm T}$ jets, significant part of the cross section comes from events where the nuclei pass each other at small impact parameters
 - \rightarrow Sensitivity to the nuclear transverse profile
- We also studied impact of e.m. breakup modelling which is needed for direct comparison with data
- While energetic photons probe more on the edge of the target nucleus, we found that applying impact-parameter dependent nPDFs has only a small effect on the cross section

... expect paper in arXiv any day now

Thank you!



EPS09s spatially dependent nPDFs

For EPS09s (Helenius et al., JHEP 07 (2012) 073) we have:

$$f_{j/B}(x, Q^2, \mathbf{s}) = \frac{1}{B} T_B(\mathbf{s}) \sum_{N \in B} r_j^{N/B}(x, Q^2, \mathbf{s}) f_{j/N}(x, Q^2)$$

with

$$r_j^{N/B}(x,Q^2,\mathbf{s}) = \sum_{m=0}^4 c_m^{j/N}(x,Q^2) [T_B(\mathbf{s})]^m, \qquad c_0^{j/N}(x,Q^2) \equiv 1$$

The cross section then becomes

$$\mathrm{d}\sigma^{AB\to A+\mathrm{dijet}+X} = \sum_{i,j,X'} \sum_{m=0}^{4} f^{\mathrm{eff},m}_{\gamma/A}(y) \otimes f_{i/\gamma}(x_{\gamma},Q^{2}) \otimes f^{m}_{j/B}(x,Q^{2}) \otimes \mathrm{d}\hat{\sigma}^{ij\to\mathrm{dijet}+X'}$$

where

$$\begin{split} f_{\gamma/A}^{\text{eff},m}(y) &= \frac{1}{B} \int d^2 \mathbf{r} \int d^2 \mathbf{s} \, f_{\gamma/A}(y,\mathbf{r}) \, [T_B(\mathbf{s})]^{m+1} \, \Gamma_{AB}^{\text{hadr.+e.m.}}(\mathbf{r} - \mathbf{s}) \\ f_{j/B}^m(x,Q^2) &= \sum_{N \in B} c_m^{j/N}(x,Q^2) f_{j/N}(x,Q^2) \end{split}$$

Dijet photoproduction at EIC

The experimental condition for photoproduction at EIC is much simpler - depends only on electron scattering angle!

$$\begin{split} f_{\gamma/e}(y) &= \frac{\alpha_{\text{e.m.}}}{2\pi} \bigg[\frac{1 + (1-y)^2}{y} \log \frac{Q_{\text{max}}^2(1-y)}{m_e^2 y^2} \\ &+ 2m_e^2 y \bigg(\frac{1}{Q_{\text{max}}^2} - \frac{1-y}{m_e^2 y^2} \bigg) \bigg], \end{split}$$

where Q^2_{\max} is the maximal photon virtuality

Probe nPDFs down to
$$x \sim 10^{-2}$$

Klasen & Kovarik, PRD 97 (2018) 114013 Guzey & Klasen, PRC 102 (2020) 065201

