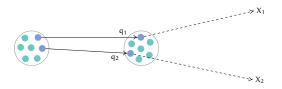


Six-jet production as a probe of triple parton scattering at the LHC

Marina Maneyro (University of Liverpool) In collaboration with David d'Enterria (CERN)

31st International Workshop on Deep Inelastic Scattering, April 8-12, 2024


Motivation and Objectives

- Why 6j?
 - multijets used for DPS studies
 - 4j by AFS (1987), UA2 (1991), CDF (1993)
 - γ+3j by CDF (1997), D0 (2020)

Large dijet cross sections for low to mid p_T

- Hard Triple Parton Scattering (TPS) studied for the 6-jet production case for the first time
- Focusing on current experimental capabilities at the LHC, for proton-proton and proton-nucleus collisions. Collision energies set at $\sqrt{s} = 14$ TeV for pp and $\sqrt{s} = 8.8$ TeV for pPb

 If the probabilities of producing X₁ and X₂ are independent: Pocket formula: σ^{pp→X₁ X₂}_{DPS} = (^m/₂) σ^{pp→X₁}_{SPS} σ^{pp→X₂}_{PS} m: combinatorial factor to avoid double counting m = 1 (2) if X₁ = X₂ (X₁ ≠ X₂)

Purely geometric estimation: $\sigma_{eff,DPS} = \left[\int d^2 b T^2(\mathbf{b})\right]^{-1}$ Transverse overlap function for pp $\left(\int d^2 b T(\mathbf{b}) = 1\right)$ $T(\mathbf{b}) = \int \rho(\mathbf{b_1})\rho(\mathbf{b_1} - \mathbf{b})d^2b_1$

where $\rho(\mathbf{b}_1)$ is the transverse parton density of the proton

■ Doesn't take into account correlations between partons → Hereafter, we will use experimental "average"

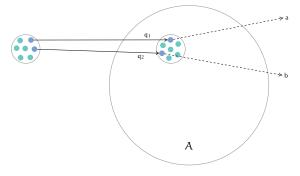
 $\sigma_{\rm eff,DPS}\approx 15~mb$

$$\begin{split} & \sigma_{\mathrm{TPS}}^{pp \to X_1 \, X_2 \, X_3} = \left(\frac{m}{3!} \right) \frac{\sigma_{\mathrm{SPS}}^{pp \to X_1} \, \sigma_{\mathrm{SPS}}^{pp \to X_2} \, \sigma_{\mathrm{SPS}}^{pp \to X_3}}{\sigma_{\mathrm{eff},\mathrm{TPS}}^2} \\ & = m = 1 \text{ if } X_1 = X_2 = X_3 \\ & = m = 3 \text{ for two different particles (i.e. } X_1 = X_2 \neq X_3) \\ & = m = 6 \text{ if all particles are different} \\ & = \sigma_{\mathrm{eff},\mathrm{TPS}} = \left[\int d^2 b \, T^3(\mathbf{b}) \right]^{-1/2} = \kappa \, \sigma_{\mathrm{eff},\mathrm{DPS}} \end{split}$$

with $\kappa = (0.82 \pm 0.11)$, obtained by studying transverse parton overlaps (hard sphere, Gaussian, exponential, dipole fit). Then, $\sigma_{\rm eff,TPS} = 12.5 \pm 4.5$ mb (d'Enterria & Snigirev (2017))

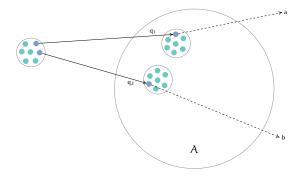
- We're also interested in studying TPS for hadron-Nucleus interactions, in particular proton-lead
- Cross sections \rightarrow proton-nucleon SPS + scaling procedure
- Single Parton Scattering:

$$\sigma^{SPS}_{\mathrm{pA}\to X}=\sigma^{SPS}_{\mathrm{pN}\to X}\int d^2b\,T_{_{\mathrm{pA}}}(\mathbf{b})=A\cdot\sigma^{SPS}_{\mathrm{pN}\to X}$$


- **T**_{pA}(\mathbf{r}): Standard nuclear thickness function
- Defined from nuclear density function $\rho_A(\mathbf{r})$ $T_{_{\mathrm{p}A}}(\mathbf{r}) = \int \rho_A \left(\sqrt{r^2 + z^2}\right) dz$, with $\int T_{_{\mathrm{p}A}}(\mathbf{r}) d^2 r = A$

For the DPS case: $\sigma_{\rm pA}^{DPS}=\sigma_{\rm pA}^{DPS,1}+\sigma_{\rm pA}^{DPS,2}$

Interactions between partons in the same nucleon:


$$\sigma^{DPS,1}_{\mathrm{pA} \rightarrow \mathfrak{ab}} = A \cdot \sigma^{DPS}_{\mathrm{pN} \rightarrow \mathfrak{ab}}$$

Partons from two different nucelons

 $\sigma^{DPS,2}_{\mathrm{pA} \rightarrow \alpha b} = \sigma^{DPS}_{\mathrm{pN} \rightarrow \alpha b} \cdot \sigma_{\mathrm{eff},\mathrm{DPS}} \cdot F_{\mathrm{pA}}$

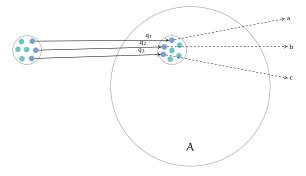
•
$$F_{pA} = \frac{A-1}{A} \int T_{pA}^2(\mathbf{r}) d^2 \mathbf{r}$$

- A $\frac{A-1}{A}$ takes into account the number of pairs of nucleons vs. the number of pairs that are different
- For Lead A = 208, F_{pA} derived from Glauber Monte Carlo model with realistic Pb density profile $F_{pA} \approx 29.5 \text{ mb}^{-1}$

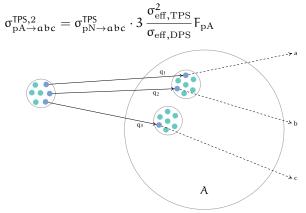
To summarize, total DPS cross section:

$$\sigma^{\text{DPS}}_{\mathrm{pA} \rightarrow \alpha b} = \left(\tfrac{\textit{m}}{2} \right) \frac{\sigma^{\text{SPS}}_{\mathrm{pN} \rightarrow \alpha} \cdot \sigma^{\text{SPS}}_{\mathrm{pN} \rightarrow b}}{\sigma_{\mathrm{eff},\text{DPS},\mathrm{pA}}}$$

 $\sigma_{\rm eff,DPS,pA}$ includes the pN DPS effective factor, geometry of $F_{\rm pA}$ and dependence in A


• For Lead, and for $\sigma_{\rm eff,DPS} \approx 15$ mb, then $\sigma_{\rm eff,DPS,pA} = 22.5$ $\pm 2.3 \ \mu b \rightarrow$ larger DPS cross sections than pp case

Fot TPS there are three different terms:

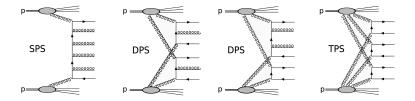

$$\sigma_{\mathrm{pA}}^{\text{TPS}} = \sigma_{\mathrm{pA}}^{\text{TPS,1}} + \sigma_{\mathrm{pA}}^{\text{TPS,2}} + \sigma_{\mathrm{pA}}^{\text{TPS,3}}$$

The first is again with all partons from the same nucleon



Partons from two different nucleons:

Partons from three different nucleons:


Summarizing the terms:

$$\sigma_{\mathrm{pA} \to \alpha b c}^{\text{TPS}} = \left(\frac{\textit{m}}{6}\right) \; \frac{\sigma_{\mathrm{pN} \to \alpha}^{\text{SPS}} \cdot \sigma_{\mathrm{pN} \to b}^{\text{SPS}} \cdot \sigma_{\mathrm{pN} \to c}^{\text{SPS}}}{\sigma_{\mathrm{eff}, \text{TPS}, \mathrm{pA}}^2}$$

• $F_{\rm pA}$ and $C_{\rm pA}$ derived from Glauber Monte Carlo. Again $\sigma_{\rm eff,TPS,pA}$ absorbs the dependence in A, $F_{\rm pA}$ and $C_{\rm pA}$, and $\sigma_{\rm eff,TPS}$

For Lead, and for $\sigma_{\rm eff,DPS} \approx 15$ mb, $\sigma_{\rm eff,TPS,pA} = 0.29 \pm 0.04$ mb (also bigger TPS yields than for pp)

To study $pp \rightarrow 6j$ we looked at:

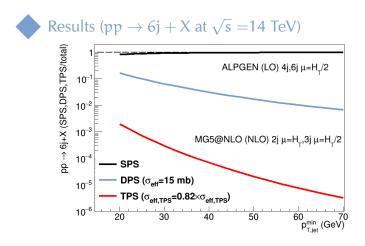
SPS: $pp \rightarrow 6j$ (LO)

DPS: from pp \rightarrow 2j (SPS, NLO) and pp \rightarrow 4j (SPS, LO), and also pp \rightarrow 3j (SPS,NLO) \times 2

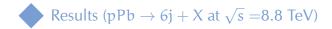
TPS: from $pp \rightarrow 2j$ (SPS,NLO) $\times 3$

- Two MC generators used: Madgraph5_aMC@NLO and Alpgen
- Madgraph5: NLO generation for 2j, 3j (can't do 4j, 6j)
- Alpgen: Works for 4j,6j (albeit at LO)
- PDF: NNPDF4.0 NLO (LO for $N \ge 4j$)
- Scale variations: dynamical scale ($Q = \hat{H}_T$ or $\hat{H}_T/2$ chosen) & renorm/fact. scale variations: $\mu_{F,R} = Q/2, Q, 2Q$.

■ MadGraph5 ($|\eta| < 5$, $p_{T,j} > 35 GeV$)


Process	σ^{LO}	$\sigma^{\rm NLO}$
$pp \rightarrow jj$ (SPS) at $\sqrt{s} = 14$ TeV (\hat{H}_T)	66.7 $\mu b {}^{+28.6\%}_{-21.9\%}{}^{+1.34\%}_{-1.34\%}$	11.7 μb ^{+95.7%} _{-205.5%}
$pp \rightarrow 3j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	$4.30 \ \mu b \ {}^{+38.4\%}_{-26\%} \ {}^{+0.746\%}_{-0.746\%}$	3.78 $\mu b {}^{+2.7\%}_{-27.2\%}$
$pp \rightarrow 4j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	$0.71~\mu b ~^{+55.9\%}_{-33.5\%} ~^{+1.1\%}_{-1.1\%}$	
$pp \rightarrow 4j + 2j$ (DPS) at $\sqrt{s} = 14 \text{ TeV}$	3.85 nb	
$pp \rightarrow 3j + 3j$ (DPS) at $\sqrt{s} = 14 \text{ TeV}$	751 pb	581 pb
$pp \rightarrow 6j$ (TPS) at $\sqrt{s} = 14 \text{ TeV}$	486 pb	2.62 pb

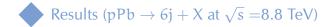
Alpgen ($|\eta| < 5$, $p_{T,j} > 35 GeV$)

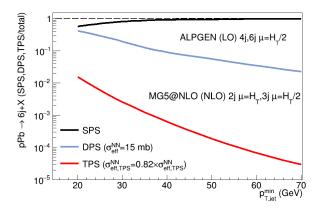

Process	σ^{LO}
$pp \rightarrow jj$ (SPS) at $\sqrt{s} = 14$ TeV (\hat{H}_T)	$73.8\pm0.023~\mu b$
$pp \rightarrow 3j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	$5.05{\pm}~0.013~\mu b$
$pp \rightarrow 4j~(\text{SPS})$ at $\sqrt{s} = 14~\text{TeV}~(\hat{H}_T/2)$	$0.92\pm0.002~\mu b$
$pp \rightarrow 6j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	31.5 ± 0.094 nb

LO and NLO results are consistent within scale uncertainties, except for the

2j case due to jets going below the $p_{T,jet}^{min}$ threshold

Can we experimentally observe TPS contributions amounting to $\approx 10^{-3}$ (at $p_{T,jet}^{min} = 20 \text{ GeV}$), 10^{-5} (at $p_{T,jet}^{min} = 50 \text{ GeV}$)? Discriminating kinematic cuts can improve this. Moreover, values of $N_{evts} = \sigma L$ are very large, so the Signal counts are very large (relatively small statistical fluctuations)


■ MadGraph5 ($|\eta| < 5$, $p_{T,j} > 35 GeV$)

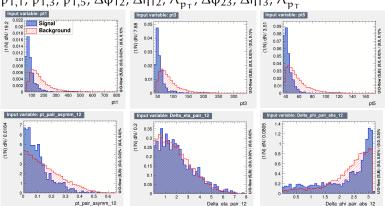

Process	$\sigma^{\rm LO}$	$\sigma^{\rm NLO}$
${\rm pN} \rightarrow jj$ (SPS) at $\sqrt{s} = 14$ TeV (\hat{H}_T)	31.1 $\mu b {}^{+25.6\%}_{-19.7\%} {}^{+1.03\%}_{-1.03\%}$	$8.41 \ \mu b \ ^{+73.2\%}_{-140.0\%}$
${\rm pN} \rightarrow 3j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	1.69 $\mu b {}^{+42.1\%}_{-27.7\%} {}^{+0.84\%}_{-0.84\%}$	1.54 μb ^{1.7%} _{-27.2%}
${\rm pN} \rightarrow 4j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	$235 \text{ nb} \substack{+59.6\% \\ -34.9\% } \substack{+1.41\% \\ -1.41\% }$	
$p-Pb \rightarrow 4j+2j$ (DPS) at $\sqrt{s}=14~\text{TeV}$	323 nb	
$p-Pb \rightarrow 3j+3j$ (DPS) at $\sqrt{s}=14~\text{TeV}$	632 nb	559 nb
$p-Pb \rightarrow 6j~(TPS)$ at $\sqrt{s}=14~TeV$	596 nb	1.18 nb

■ Alpgen ($|\eta| < 5$, $p_{T,j} > 35 GeV$)

Process	σ^{LO}
${\rm pN} \rightarrow jj$ (SPS) at $\sqrt{s} = 14$ TeV (\hat{H}_T)	$34.8\pm0.010~\mu b$
${\rm pN} \rightarrow 3j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	$1.93\pm0.004~\mu b$
$\mathrm{pN} \rightarrow 4j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	$282\pm0.494~\text{nb}$
${\rm pN} \rightarrow 6j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	$5.56 {\pm}~0.017~\text{nb}$

 $\sigma_{p-Pb} = A \times \sigma_{\rm pN}$

6j TPS in pPb amounts to 2% (10^{-4}) at $p_{T,jet}^{min} \sim 20$ GeV (50 GeV). Much larger DPS/TPS contributions than in pp collisions.


- MG5/Alpgen events showered using PYTHIA 8
- I Jet reconstruction with anti- k_T algorithm and R = 0.4 (FastJet)
- Key kinematic variables identified to separate SPS, DPS and TPS events
- Jets ranked by decreasing p_{T,jet} value
- Variables (66 initially):
 - $p_{T,i}$ for i = 1, ..., 6
 - $\blacksquare \ \Delta \eta_{\mathfrak{i}\mathfrak{j}}$ for all possible pairs ($|\eta|<5)$
 - $\Delta \phi_{ij}$ (absolute, between 0 and π)
 - $A_{p_T}^{ij} = |(p_{T,i} p_{T,j})/(p_{T,i} + p_{T,j})|$, p_T pair asymmetry
 - Invariant mass of the pairs

- The selected variables and the generated SPS, DPS (background) and TPS (signal) events were used in conjunction with TMVA
- Studied the relevance of the variables for separating background and signal using Boosted Decision Trees
- The MPI events were weighted according to their known proportion of each contribution

Relevant discriminating variables include:

 $p_{T,1}, p_{T,3}, p_{T,5}, \Delta \varphi_{12}, \Delta \eta_{12}, A_{p_T}^{12}, \Delta \varphi_{23}, \Delta \eta_{13}, A_{p_T}^{56}$

- Preliminary results indicate BDT output with stat. significance > 5σ for L_{int} = 1fb. Ongoing MVA training/testing to obtain final significance soon.
- TPS 6-jets yields are large at the LHC: Observing TPS in pp and pPb promising, new σ_{eff} extraction at hand.