

One-loop QCD corrections to inclusive production of J/ψ and Y in e^+e^- annihilation

M. Nefedov* (IJClab, Orsay)

J.P. Lansberg (IJCLab), Liza Yedelkina (IJCLab; UCD Dublin)

Apr. 9, 2024

DIS-2024, Grenoble

Inclusive J/ψ and Y production in e^+e^-

This project is supported in parts by the European Union's Marie Sklodowska Curie action "RadCor4HEF" (grant agreement No. 101065263)

Introduction: inclusive J/ψ and Y production in e^+e^- annihilation

Production channels: diffraction, direct-photon, (single/double) resolved photon

- Diffraction contributes at p_T < 1 GeV
- Double-resolved production is suppressed by *α_s* and one extra photon PDF
- Only direct-photon and single-resolved production significantly cotributes at p_T > 1 GeV
- To remove background from $e^+e^- \rightarrow \gamma Z$ and $e^+e^- \rightarrow W^+W^-$ DELPHI experiment puts $W_{\text{vis.}}^{(\gamma\gamma)} < 35 \text{ GeV cut.}$

Quarkonium production mechanisms

- In quarkonium production physics one uses the fact that relative velocity of the bound state v is low: $v^2 \sim 0.3$ for charmonia and $v^2 \sim 0.1$ for bottomonia
- → The colour-singlet QQ̄-state dominates the Fock-state decomposition of the physical S-wave bound state, e.g.:

$$|J/\psi
angle = O(1)|car{c}[^3S_1^{[1]}]
angle + O(v)|car{c}[^3P_J^{[8]}] + g
angle + \dots$$

 So in the leading-order in v the production cross section is (colour-singlet model (CSM)):

$$d\sigma(J/\psi + X) = d\sigma(c\bar{c}[{}^{3}S_{1}^{[1]}] + X) \times \frac{|R(0)|^{2}}{4\pi} + O(v^{2})$$

 Colour-octet states contribute (NRQCD), but corresponding long-distance matrix elements are supressed by v².

In the present work we revisit main **CSM** production channels at NLO in α_s and provide predictions for future high-energy $e^+_{-}e^-_{-}$ facilities

M. Nefedov (IJCLab)

LEP2 Puzzle: the DELPHI data overshoot CS+CO

- M. Klasen, B.A. Kniehl, L.N. Mihaila, M. Steinhauser (Phys.Rev.Lett.89:032001,2002): at low p_T LO CS+CO prediction reproduces the DELPHI data (J. Abdallah et al., PLB 565, 76 (2003))
- M. Butenschoen,B.A.Kniehl: (PRD84, 051501(R),2011): At NLO in α_s-order CS+CO these data do not agree anymore with NRQCD
- DELPHI: the absolute p_T-spectrum was not published in PLB
- CO: perturbatively unstable?
- In QCD calculations we put $W^{(\gamma\gamma)} < 35$ GeV but $W^{(\gamma\gamma)} > W^{(\gamma\gamma)}_{vis}$!

LEP2 Puzzle: more direct photon processes

Z.Q.Chen, L.B. Chen and C.F. Qiao: PRD 95, 036001 (2017)

- Given the current situation \rightarrow direct photon processes matter
- Dominant direct γγ → J/ψcc̄ was computed up to NLO in α_s in CS → but it's not enough to reproduce the data
- the QED (direct-photon) contribution to the inclusive yield was never considered for DELPHI

Subprocesses in CSM

• Direct-photon (QED) channel:

$$\gamma + \gamma
ightarrow Q ar{Q} \left[{}^3S_1^{[1]}
ight] + \gamma,$$

recieves finite one-loop correction at $O(\alpha_s)$. [Klasen, Kniehl, Michaila, Steinhauser, PRD 2004] No publicly available implementation exists.

• Single-resolved channel at LO:

$$\gamma + g
ightarrow Q ar{Q} \left[{}^3S_1^{[1]}
ight] + g,$$

and NLO, one-loop + real-emission corrections:

$$egin{array}{rcl} \gamma+g &
ightarrow & Qar{Q}\left[{}^3S_1^{[1]}
ight]+g+g \ ({
m or}\ +q+ar{q}), \ \gamma+q &
ightarrow & Qar{Q}\left[{}^3S_1^{[1]}
ight]+g+q, \end{array}$$

[Kraemer, NPB 1995] No publicly available implementation exists.

• **Direct-photon (QCD)** channels (so far at LO in our calculation, using HelacOnia):

$$\begin{array}{rcl} \gamma+\gamma & \rightarrow & Q\bar{Q} \left[{}^3S_1^{[1]} \right] + Q + \bar{Q}, \\ \gamma+\gamma & \rightarrow & Q\bar{Q} \left[{}^3S_1^{[1]} \right] + g + g + g. \end{array}$$

э

Virtual NLO corrections

- FeynArts: to generate expressions for Feynman diagrams
- In the amplitudes for the bound state of cc we replace heavy-quark spinors *ū*(p₁) and v(p₂) with the projector on the colour-singlet state with total spin 1 and put p₁ = p₂ = p_{J/ψ}/2.
- FeynCalc: tensor reduction & mapping to master topologies
- Solve linear dependence in propagators introduced by the non-relativistic limit → partial-fractioning, leads to squared denominators in Coulomb-divergent diagrams
- FIRE, KIRA IBP reduction to standard basis of one-loop Feynman integrals
- LoopTools library: numerical evaluation of master integrals

Subset of diagrams containing Coulomb divergence:

Real-emission NLO corrections

- $\bullet~$ The 2 \rightarrow 3 matrix elements generated with FormCalc
- The **Catani-Seymour** dipole subtraction algorithm is used to deal with infra-red and collinear divergences in the $2 \rightarrow 3$ phase-space integration
- The most numerically demanding part of the NLO computation: the 2 → 3 PS integration is separated from the convolution with photon PDF and photon fluxes using intermadiate interpolation ⇒ fast and stable evaluation of NLO cross sections
- Numerous cross checks against other existing implementations of the quarkonium photoproduction process (thanks to M. Butenschön, Yu Feng and c. Flore!)

э

Results with LEP2 DELPHI cuts for J/ψ

- We computed CS 1-loop QED direct-γ predictions for the 1st time for DELPHI
- QED contribution is relevant at low p_T
- CS channels $(J/\psi + ggg)$ and $(J/\psi + c\bar{c})$ included at LO in α_s

DEPLHI data: J. Abdallah et al., PLB 565, 76 (2003)

Results with LEP2 DELPHI cuts for J/ψ

- We computed CS 1-loop QED direct-γ predictions for the 1st time for DELPHI
- QED contribution is relevant at low p_T
- CS channels $(J/\psi + ggg)$ and $(J/\psi + c\bar{c})$ included at LO in α_s

DEPLHI data: J. Abdallah et al., PLB 565, 76 (2003)

Future high-energy e^+e^- colliders

experiment	int. lumi. (ab ⁻¹)	$\sqrt{s}(GeV)$	"golden" prod. mode
CEPC	5.6	240	Н
CEPC	5.6	240	Н
CEPC	16	91.2	Z
CEPC	2.6	160	W±
FCC-ee	5	240	Н
FCC-ee	150	91	Z
FCC-ee	12	160	W [±]
FCC-ee	1.7	350	tī
CLIC	0.1	350	Z, tī, H
CLIC	0.5	380	tīt, H
CLIC	1.5	1500	tīt, H
CLIC	3.0	3000	tīt, H

Aug. 23, 2023

イロト イポト イヨト イヨト

æ

J/ψ production at $\sqrt{s}_{ee} = 240 \text{GeV}$

- We computed CS 1-loop QED direct-γ predictions for the 1st time for CEPC
- QED contribution is relevant at low p_T
- CS channels $(J/\psi + ggg)$ and $(J/\psi + c\bar{c})$ included at LO in α_s

(日)

 J/ψ production at $\sqrt{s}_{ee} = 1.5$ TeV

- We computed CS 1-loop QED direct-γ predictions for the 1st time for CEPC
- QED contribution is relevant at low p_T
- CS channel $(J/\psi + c\bar{c})$ included at LO in α_s

(日)

Y production at $\sqrt{s}_{ee} = 240 \text{GeV}$

- We computed CS 1-loop QED direct-photon and single-resolved photon predictions for Y for the 1st time for CEPC
- For Y CO-contribution is smaller
- QED contribution is relevant at low p_T

イロト イヨト イヨト イヨト

Y production at $\sqrt{s}_{ee} = 1.5$ TeV

- We computed CS 1-loop QED direct-photon and single-resolved photon predictions for Y for the 1st time for CEPC
- For Y CO-contribution is smaller
- QED contribution is relevant at low p_T

(日)

Exclusive $\gamma + \gamma \rightarrow J/\psi + \gamma$ is within the LHC reach

Thanks to D. d'Enterria and K.Lynch

- Photon efficiency:
 - 2.5 < ρ^γ_T < 3GeV: O(0.5) due to trigger, expected to grow close to 1 if associated with a J/ψ
 - $p_T^{\gamma} > 3\text{GeV}=O(1)$
- Cross section in UPC PbPb collisions in the CMS at $\sqrt{s} = 5.02$ TeV for
 - ▶ 1.2 < |y^ψ| < 2.4</p>
 - |η^γ| < 2.4</p>
 - $p_T^{\psi} > 2.5 \text{GeV}$
- $\sigma_{LO} = O(10)$ nb, ($K_{NLO} = O(1)$)
- Expected event counts: $\sigma \times \epsilon \times Br \times L_{PbPb} = 10 \times 0.06 \times 13 = O(10)$ events
- Conclusion: exclusive direct-photon (J/ψ + γ) can be measured in ultra-peripheral heavy-ion collisions at the LHC
- This gives us confidence that inclusive J/ψ + X from photon fusion can be measured at LHC if UPC can be identified in inclusive reactions

イロト 不得 トイヨト イヨト

э

Summary

- LEP puzzle: the experimental data from DELPHI LEP2 overshoots CS+CO NLO- α_s leading $\gamma\gamma \rightarrow J/\psi + X$ contributions
- It may indicate that we have issues with the normalisation of the data or with the CO model
- direct-photon processes in CSM $(J/\psi + \gamma, J/\psi + c\bar{c})$ are not negligible
- We obtained the predictions for CS one-loop QED direct-photon production and single-resolved photon contributions for J/ψ production for DELPHI and future high-energy e^+e^- colliders
- Predictions for Y production also had been obtained
- Exclusive direct-photon $(J/\psi + \gamma)$ can be measured in ultra-peripheral heavy-ion collisions at the LHC

イロト 不得 トイヨト イヨト

3