## Extensions of MadGraph5\_aMC@NLO for QCD studies

#### Laboni Manna

Warsaw University of Technology

DIS 2024



Laboni Manna (WUT) Extensions of MadGraph5 aMC@NLO fo

#### Theoretical Overview

Parton distribution functions (PDFs)  $= f(x, \mu_F^2) =$  momentum distribution of the quarks and gluons within a hadron. In collinear factorization,

$$\sigma_{AB} = \sum_{i,j} \int dx_i \int dx_j \int d\Phi_f f_i^A(x_i, \mu_F^2) f_j^B(x_j, \mu_F^2) \frac{d\hat{\sigma}_{ab}(x_i, x_j, \mu_F^2, \Phi_f)}{dx_i dx_j d\Phi_f}$$

 $d\hat{\sigma}_{ab}=$  Partonic cross section related to a & b , calculable within perturbation theory.

The partonic cross section can be expanded as:

1

$$\hat{\sigma} = \underbrace{\sigma^{Born}\left(1 + \frac{\alpha_s}{2\pi}\sigma^1 + ...\right)}_{\text{NLO}}$$

\* LO = Leading order, NLO = Next-to-leading order and so on.

Parton-distribution functions (PDFs): essential link between hadronic cross sections and partonic cross sections Challenging situation for PDFs of nucleons inside nuclei (nPDFs)! nPDFs give information on:

- The nuclear structure ;
- The initial state of relativistic heavy-ion collisions.

(n)PDFs cannot be computed and are fit to experimental data. Only their evolution is perturbative

**Nuclear Modification Factors:** For rare or hard probes  $[\sigma_{NN}^{probe} << \sigma_{NN}^{inel}]$  $\sigma_{AB}^{probe} = A \times B \times \sigma_{NN}^{probe}$  [Each probe is produced independently]

We can define Nuclear Modification Factors R as,

$$R_{AB} = \frac{\sigma_{AB}}{AB\sigma_{pp}}$$
$$R_{pA} = \frac{\sigma_{pA}}{1 \times A \times \sigma_{pp}}$$
$$R_{eA} = \frac{\sigma_{eA}}{1 \times A \times \sigma_{ep}}$$

 $R \approx 1$  : No nuclear effects

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Introduction to MadGraph5\_aMC@NLO

- It's an automated matrix element generator.
- It can support a huge class of particle physics models.
- The program can calculate amplitudes at the tree and one loop levels for arbitrary processes.



#### Missing: asymmetric collisions at next-to-leading (NLO)!

# Asymmetric collisions implemented in MG5\_aMC Photoproduction (L. Manna) Hadron A +Hadron B collision (A. Safronov) Quarkonium production (C. Flett & A. Colpani-Serri)

Electron-proton processes : Classified according to  $Q^2$ , the photon virtuality  $Q^2 = -q^2 = -(k - k')^2$ 

I) Photoproduction : Photon is nearly on mass shell.



II) Deep-Inelastic-scattering (DIS): Photon is off mass shell.  $e^{-}$  $2^{\gamma^{*}}$ q $\bar{q}$  $\bar{q}$  Validations
Photoproduction
pA collisions

#### Direct Photoproduction: Validation of LO Results



Better agreement with HELAC-Onia than that of FMNR.

#### \*HO = Helac-Onia \*FMNR : a private code by Stefano Frixione, Michelangelo L. Mangano, Paolo Nason, Giovanni Ridolfi https://doi.org/10.1016/0550-3213(94)90501-0

Laboni Manna (WUT)

Extensions of MadGraph5 aMC@NLO fo

#### Direct photoproduction: Validation at NLO



Laboni Manna (WUT)

Extensions of MadGraph5 aMC@NLO fo

#### Validation of calculations for pA collisions at NLO



- Perfect agreement between MG5\_aMC and MCFM-based computations W production with nCTEQ15
- No difference in the PDF uncertainty, if computation in MCFM-based code done with asymmetric uncertainties



A. Safronov et al., PoS ICHEP2022 (2022) 494 (https://doi.org/10.22323/1.414.0494)

#### Validations of calculations for pA collisions

#### Example: bottom quark production in pPb collision at LHC





Phys. Rev. D99 no. 5, (2019) 052011, arXiv:1902.05599 [hep-ex].

To make this plot, one just needs to input two numbers: LHAPDF IDs for the proton and nCTEQ15 for the lead.

Scale uncertainty can be computed automatically .

A. Safronov et al., PoS ICHEP2022 (2022) 494 (https://doi.org/10.22323/1.414.0494)

#### Resolved photoproduction: Validation at NLO



Approximately  $\sim O(1\%)$  agreement for 1 GeV  $\langle P_T \rangle < 10$  GeV (resolved photon contribution)!

Laboni Manna (WUT)

Extensions of MadGraph5 aMC@NLO fo

12/26

#### Prediction for future *ep* experiments



Transverse momenta distribution of Bottom and Charm quark



Rapidity distribution of Bottom and Charm quark

< D > < A > < B < < B </p>

#### Nuclear modification factor for the EIC



 $R_{eA}$  distribution at two different energies as a function of the rapidity of charm quark

## Quarkonium production in MG5\_aMC

- Currently, no quarkonium cross sections or event generation in MG5\_aMC
- Quarkonium computations important for e.g. QCD studies and resolving internal structure of nucleons
- In collinear factorisation,

$$\sigma(pp \to Q + X) = \sum_{i,j,n} \int dx_1 dx_2 f_{i/p}(x_1) f_{j/p}(x_2) \hat{\sigma}(ij \to Q\bar{Q}[n] + X) \langle O_n^Q \rangle$$

New ingredients:

- $\langle O_n^Q \rangle$  : non-pert. long-distance matrix element
- QQ[n]: open QQ pair in quantum state n = <sup>2s+1</sup>L<sup>c</sup><sub>J</sub>.
  L: orbital angular momentum (L = 0 (S-wave), L = 1 (P-wave), ...),
  s: spin (s = 0 (pseudoscalar), s = 1 (vector)), c: colour (c = 1 (singlet), c = 8 (octet)), J: total angular momentum (L + s).

#### Goal: LO automation with NLO automation in sight. So far:

- Colour singlet & octet and S-wave spin projectors implemented
- Building blocks of interface at level of MG5's generate command for quarkonium processes
- Agreement of S-wave quarkonium single and associated colour singlet and octet matrix-element squared with Helac-Onia H-S. Shao, https://doi:10.1016/j.cpc.2013.05.023. See also (albeit deprecated) MadOnia

P. Artoisenet, F. Maltoni, T. Stelzer https://doi:10.1088/1126-6708/2008/02/102

 Some examples checked: generate g g > b b~(1S01), g g > b b~(1S08) & g g > b b~(1S01) g

To do: For LO, need to finalise user interface and phase-space-integration adaptation, and incorporation into NLOAccess Future: NLO automation (see H-S. Shao, A. Hamed, L. Simon arXiv:2402.19221)

- Our implementation of photoproduction at NLO in MG5\_aMC is completed and will be available very soon for users.
- We can study Ultra peripheral collisions as well.
- Asymmetric hadron A + hadron B collisions in MG5\_aMC have been implemented.
- Resolved photoproduction has been studied.
- Nuclear modification factors are computed automatically with their scale uncertainties.
- Inclusion of hadronisation for both asymmetric collisions (future work!).
- Finalising LO automation of *S*-wave quarkonium in MG5\_aMC with NLO in sight.

Part of this work has received funding from the European Union's Horizon 2020 research and innovation programme as part of the Marie Skłodowska-Curie Innovative Training Network MCnetITN3 (grant agreement no. 722104). The research was funded by POB HEP of Warsaw University of Technology within the Excellence Initiative: Research University (IDUB) programme.

## backup slides

3

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

## NLO calculation



Laboni Manna (WUT)

$$\sigma_{\rm NLO} = \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \mathcal{V} + \int d\Phi^{(n+1)} \mathcal{R}$$
$$= \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \left[ \mathcal{V} + \int d\Phi^{(1)} S \right] + \int d\Phi^{(n+1)} \left[ \mathcal{R} - S \right]$$

The subtraction counterterm S should be chosen:

- It exactly matches the singular behavior of real ME
- It can be integrated numerically in a convenient way
- It can be integrated exactly in the d dimension
- It is process independent (overall factor times Born ME)

#### Photoproduction



æ

Laboni Manna (WUT)

#### Photoproduction vs DIS

$$\sigma_{ep} = \int dx_{\gamma} f_{\gamma}^{(e)}(x_{\gamma}, \mu_{WW}) \sigma_{\gamma p} \qquad \qquad \sigma_{\gamma p}^{\text{pointlike}} = \sum_{i} \int_{0}^{1} dx_{i} \int d\Phi_{f} f_{i}(x_{i}, \mu_{F}^{2}) \frac{d\sigma_{\gamma i}(x_{i}, \mu_{F}^{2}, \Phi_{f})}{dx_{i} d\Phi_{f}} \\ \sigma_{\gamma p} = \sum_{i} \int_{0}^{1} dx_{i} \int d\Phi_{f} f_{i}(x_{i}, \mu_{F}^{2}) \frac{d\tilde{\sigma}_{\gamma i}(x_{i}, \mu_{F}^{2}, \Phi_{f})}{dx_{i} d\Phi_{f}} \quad \sigma_{\gamma p}^{\text{hadronic}} = \sum_{ij} \int_{0}^{1} dx_{i} \int_{0}^{1} dy_{j} \int d\Phi_{f} f_{i}(x_{i}, \mu_{F}^{2}) f_{j}^{(\gamma)}(y_{j}, \mu_{F}^{2}) \frac{d\tilde{\sigma}_{ij}(x_{i}, \mu_{F}^{2}, \Phi_{f})}{dx_{i} d\Phi_{f} d\Psi_{f}}$$

#### NLO calculations and approaches:

NLO calculations are performed in several schemes. All approaches assume a scale to be hard enough to apply pQCD and to guarantee the validity of the factorization theorem.

- The massive approach is a fixed order calculation (in  $\alpha_s$ ) with  $m_Q \neq 0$
- The massless approach sets  $m_Q = 0$ . Therefore the heavy quark is treated as an active flavor in the proton.
- In a third approach (FONLL) the features of both methods are combined. The matched scheme adjusts the number of partons, nf, in the proton according to the relevant scale.
- Our work is focused on the first approach, massive heavy quark.

A (1) < A (1) < A (1) </p>

#### Validation of LO result



Comparison between pseudorapidity distribution of bottom quark pair production cross section obtained from MG5 at LO (FLO) and with another LO event generator called Helac-onia (HO).

|               | MG5(nb) (LO)                 | MG5(nb) (FLO)            | HO (nb) (LO)                    |
|---------------|------------------------------|--------------------------|---------------------------------|
| cross section | $3.34 \pm 4.4 	imes 10^{-3}$ | $3.34\pm19\times10^{-3}$ | $3.34 \pm 10.08 \times 10^{-3}$ |

#### ▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

#### Validations of MG5 in asymmetric collisions



#### Validation vs MCFM for CT10 + nCTEQ15 for Z production at NLO

- Perfect agreement between MG5 and MCFM-based computations Z production with nCTEQ15
- No difference in the uncertainty, if computation in MCFM-based code done with asymmetric uncertainties

A. Safronov et al., PoS ICHEP2022 (2022) 494