Discoverying (true) tauonium at colliders

Details: arXiv:2202.02316 [hep-ph], 2204.07269 [hep-ph], arXiv:2302.07365 [hep-ph]

Exotic leptonium atoms

- Opposite-charge leptons (ℓ[±] = e[±], μ[±], τ[±]) can form transient "onium" bound states under their QED interaction. Out of 6 possible exotic leptonic atoms (e⁺e⁻), (μ[±]e[∓]), (μ[±]μ⁻), (τ[±]e[∓]), (τ[±]μ[∓]), (τ⁺τ⁻), only the two first (positronium in 1951) and (muonium in 1960) have been observed.
- → Para- (J^{PC} = 0⁻⁺) and ortho- (J^{PC} = 1⁻⁻) leptonium ground states form depending on relative spin orientation of leptons.

Ditauonium $\tau \equiv (\tau^+ \tau^-)$, barely studied, is smallest & most-bound leptonium state:

Mass: $m_{\tau} = 2m_{\tau} + E_{bind} = 3553.6962 \pm 0.2400 \text{ MeV}$, $E_{bind} = -\alpha^2 m_{\tau} / (4n^2) = -23.7 \text{ keV}$ Bohr radius: $a_0 = 2/(\alpha m_{\tau}) = 30.4 \text{ fm} (\times 3500 \text{ smaller than positronium})$ Rydberg const (γ ionization): $R_{\omega} = m_{\tau} \alpha^2 / 4\pi = 3.76 \text{ keV}$ ($\times 3500$ larger than positronium)

Compared to other exotic atoms, ditauonium can provide:

- → Precision SM: Most competitive measurement of the tau mass possible.
- → New tests of QED & CPT symmetries at much higher masses (smaller distances).
- → Sensitivity to any BSM enhanced by $(m_e/\Lambda_{BSM})^n$, unaffected by hadronic uncertainties.

Ditauonium partial widths & decays

- Para-τ decays mostly to γγ (BR≈80%):
- $\Gamma^{(0)}(n^1 S_0 \to \gamma \gamma) = \frac{\alpha^5 m_\tau}{2 n^3} \underset{n=1}{=} 0.018384 \text{ eV}$
- Ortho-τ has many open channels: e⁺e⁻, μ⁺μ⁻, qq̄ BR≈20%, 20%, 45%

- Weak decay of constituent τ^{\pm} : $\Gamma_{(2)\tau \to X} = 2/\tau = 0.004535 \text{ eV}$ ($\tau \approx 290 \text{ fs}$) BR_{eff} $\approx 19\%,14\%$ for para-,ortho- τ Ditauonium energy levels
- Ditauonium spectroscopy (NNLO* non-relativ. QED):
- → Lamb shifts:

$$\Delta E^{1S,2S,...} = -115.4, -14.4,... eV$$

→ Hyperfine splittings:

$$\Delta \mathsf{E}_{\mathsf{hfs}}(1^{1}\mathsf{S}_{0}, 1^{3}\mathsf{S}_{1}, ...) = -1.65, +1.29, ... \, \mathsf{eV}$$

[DdE, R.Perez-Ramos, H-S. Shao: arXiv:2204.07269]

Ditauonium partial widths & decays

Para-τ decays mostly to γγ (BR≈80%):

$$\Gamma^{(0)}(n^1 S_0 \to \gamma \gamma) = \frac{\alpha^5 m_\tau}{2 n^3} \underset{n=1}{=} 0.018384 \text{ eV} \qquad \tau^-$$

Ortho-τ has many open channels: e⁺e⁻, μ⁺μ⁻, qq̄ BR≈20%, 20%, 45%

- Ditauonium spectroscopy (NNLO* non-relativ. QED):
- → Only the two lowest states $(1^{1}S_{0} \& 1^{3}S_{1})$ have lifetimes shorter $(\tau \approx 27.6, 20.83 \text{ fs})$ than the weak decay of the constituents tau's.

[DdE, R.Perez-Ramos, H-S. Shao: arXiv:2204.07269]

Ditauonium production at e⁺e⁻ & hadron colliders

3 para-ditauonium prod./decay channels: photon-photon, s-channel+γ

• 4 ortho-ditauonium prod./decay channels: s-channel fusion (w/ & w/o γ)

DIS 2024, Apr'24

David d'Enterria (CERN)

Para-ditauonium via $\gamma\gamma \rightarrow \tau_0 \rightarrow \gamma\gamma$

Cross sections for signal & backgrounds computed in the Weizsäcker-Williams approximation (EPA) for γγ collisions via gamma-UPC 2207.03012 [hep-ph]

 e^{-},h .

 $e^+ l$

 $e^{-}.h$

 $e^+.h$

 \mathcal{T}_0

Photon-photon luminosity for e⁺e⁻ & ultraperipheral p-p, p-A & A-A collisions

Para-ditauonium via $\gamma\gamma \rightarrow \tau_0 \rightarrow \gamma\gamma$: Backgrounds

Cross sections for signal & backgrounds computed in the Weizsäcker-Williams approximation (EPA) for γγ collisions via gamma-UPC 2207.03012 [hep-ph]

Backgrounds within $m_{\gamma\gamma} \approx 2.9-3.7$ GeV:

→ C-even charmonium: 3 cc: η_c (2S), $\chi_{c1,2}$ resonances within ~100 MeV of τ_0

→ Light-by-light scattering (LbL) continuum.

→ Charmonia resonances have $\mathcal{O}(\text{keV})$ diphoton widths: $\mathcal{O}(10^5)$ larger than para- τ_0 . But, diphoton BR is $\mathcal{O}(10^4)$ larger for para- τ_0 than for c-cbar states.

 e^+

Para-ditauonium via $\gamma\gamma \rightarrow \tau_0 \rightarrow \gamma\gamma$: Yields

Cross sections for signal & backgrounds computed in the Weizsäcker-Williams approximation (EPA) for $\gamma\gamma$ collisions via gamma-UPC 2207.03012 [hep-ph]

Results for e^+e^- and ultraperipheral p-p, p-A & A-A collisions:

Colliding system, c.m. energy, \mathcal{L}_{int} , exp.		$\sigma imes \mathcal{B}_{\gamma\gamma}$							
	$\eta_{\rm c}(1{ m S})$	$\eta_{\rm c}(2{ m S})$	$\chi_{\rm c,0}(1{\rm P})$	$\chi_{c,2}(1P)$	LbL	${\mathcal T}_0$	${\mathcal T}_0$	$\chi_{c,2}(1P)$	
e^+e^- at 3.78 GeV, 20 fb ⁻¹ , BES III	120 fb	3.6 ab	15 ab	13 ab	30 ab	0.25 ab	—	_	
e^+e^- at 10.6 GeV, 50 ab ⁻¹ , Belle II	1.7 fb	0.35 fb	0.52 fb	0.77 fb	1.7 fb	0.015 fb	750	38 500	
e ⁺ e [−] at 91.2 GeV, 50 ab ^{−1} , FCC-ee	11 fb	2.8 fb	3.9 fb	6.0 fb	12 fb	0.11 fb	5 600	$3\cdot 10^5$	
p-p at 14 TeV, 300 fb ⁻¹ , LHC	7.9 fb	2.0 fb	2.8 fb	4.3 fb	6.3 fb	0.08 fb	24	1290	
p-Pb at 8.8 TeV, 0.6 pb ⁻¹ , LHC	25 pb	6.3 pb	8.7 pb	13 pb	21 pb	0.25 pb	0.15	8	
Pb-Pb at 5.5 TeV, 2 nb ⁻¹ , LHC	61 nb	15 nb	21 nb	31 nb	62 nb	0.59 nb	1.2	62	

- → Relative prod. x-sections: $\eta_c(1S):\chi_{c2}(1P):\chi_{c0}(1P):\eta_c(2S):\tau_0 \approx 100:50:30:25:1$
- → Para- τ_0 x-sections increase with \sqrt{s} and Z⁴:

Largest x-sections (0.6 nb) in PbPb UPC (but handful of evts expected at LHC) Largest yields: 750, 5600 counts at Belle-II, FCC-ee thanks to \mathcal{L}_{int} = 50 ab⁻¹. DIS 2024, Apr'24

Para-ditauonium via $\gamma\gamma \rightarrow \tau_0 \rightarrow \gamma\gamma$ (Belle II/FCC-ee)

- Trigger: Require two exclusive 1.5–2 GeV photons back-to-back with $m_{yy} \approx m_{\tau_0}$
- Reco. performances (Belle-II type: high-reso low-energy crystal ECAL): Acceptance: $10^{\circ} < \theta_{\gamma} < 170^{\circ}$. Mass resolution: ~2%. Photon reco effic. ~100%.
 - → All diphoton resonances Gaussian-smeared with ~70 MeV widths:

Ditauonium signal swamped by overlapping $\chi_{c2}(1P)$ & neighboring $\chi_{c0}(1P)$, $\eta_{c}(2S)$

Para-ditauonium via $\gamma\gamma \rightarrow \tau_0 \rightarrow \gamma\gamma$ (Belle II/FCC-ee)

1-million events generated for signal & backgrounds. Run MVA (BDT) with 12 different single-γ and γ-pair kinematic variables for signal/backgds separation:
 (i) Strong discrimination power (factor of ~20) of LbL continuum from signal.
 (ii) No discrimination achieved for overlapping charmonia (decay-γ angular modulation

of tensor χ_{c2} different than scalar τ_0 signal, but ×50 suppressed yields).

- Signal extracted through multi-Gaussian m_{γγ} fit.
- Statistical significance derived from profile-likelihood of fits assuming signal presence or backgd-only, with 0.3% background syst. uncertainty:

Significance (Belle-II) $\approx 3\sigma$ Significance (FCC-ee) $\approx 5\sigma$

→ Pseudodata-null-hypothesis fit residuals:

Reconstructed yields (LbL subtracted)

Para-ditauonium via $\gamma\gamma \rightarrow \tau_0$ Dalitz decays?

■ Whereas background ccbar resonances decay directly from the IP, the para- τ_0 has a lifetime of $\tau \approx 28$ fs, i.e. a decay-length $c\tau \approx 8$ µm.

→ For $\beta\gamma \approx 3$: <L_{vtx}> ≈ 25 µm tail of events up to ~1-mm. Any single event would be an unambiguous τ_0 observation!

→ However, diphoton vertex pointing capabilities are much coarser: 1-cm range for LHC-type EM calos.

Pico-second(!) γ ToF needed to separate <1mm distances \cong

Displaced charged lepton vertices from Dalitz decays

 $\tau_{_0} \rightarrow e^+e^-\gamma, \, \mu^+\mu^-\gamma$ with BR~2.3%?

 $\mathcal{O}(150), \mathcal{O}(25)$ signal counts at FCC-ee/Belle-II...

But para- τ_0 produced almost at rest ($\beta \gamma \approx 0.06$) \otimes

David d'Enterria (CERN)

Para-ditauonium via $e^+e^- \rightarrow \tau_0^- + \gamma$?

s-channel production of para-ditauonium plus FSR in e⁺e⁻ collisions:

Colliding system, \sqrt{s} , \mathcal{L}_{int} , detector

 e^+e^- at 3.78 GeV, 20 fb⁻¹, BES III

 e^+e^- at 10.6 GeV, 50 ab⁻¹, Belle II

 e^+e^- at 91.2 GeV, 50 ab⁻¹, FCC-ee

 e^+e^- at 4.3 GeV, 1 ab⁻¹, STCF

 e^+e^- at 7 GeV, 1 ab⁻¹, STCF

$$\sigma(e^+e^- \to \mathcal{T}_0 + \gamma) \approx \frac{2}{3} \frac{\pi \alpha^6}{n^3} \frac{m_{\mathcal{T}}^2}{s^2} \left(1 - \frac{m_{\mathcal{T}}^2}{s}\right)$$

Negligible events expected, swamped by huge backgrounds:

 $\sigma(\mathcal{T}_0 + \gamma) \times \mathcal{B}_{\gamma\gamma}$

1.1 ab

0.37 ab

0.69 ab

0.085 ab

 $3.6 \cdot 10^{-5}$ ab

 $\sigma(e^+e^- \rightarrow \gamma \gamma \gamma) \times \mathcal{L}_{int} = 15 \text{ pb} \times 50 \text{ ab}^{-1} = 7.5 \cdot 10^8 \text{ events at Belle II}$

 $N(\mathcal{T}_0(\gamma\gamma)+\gamma)$

1

4

0.37

0.014

Ortho-ditauonium via $e^+e^- \rightarrow \tau_1$ fusion

Resonant s-channel production of ortho-ditauonium in e⁺e⁻ collisions:

Actual Breit-Wigner x-section reduced by >10⁷, down to 2–20 pb, due to: – ISR & beam-energy spread $\delta_{\sqrt{s}}$ (reduceable via monochromatization)

– Accurate knowledge of m_r peak position required for \sqrt{s} .

 $\sigma^{\text{actual}}(e^+e^- \to \mathcal{T}_1) = \frac{12\pi^2 \Gamma_{e^+e^-}(\mathcal{T}_1)}{m_{\mathcal{T}}} \int_0^1 dx_1 \int_0^1 dx_2 f_{e^-/e^-}(x_1, s) f_{e^+/e^+}(x_2, s) V_2\left(\sqrt{x_1 x_2 s}; m_{\mathcal{T}}, \Gamma_{\text{tot}}(\mathcal{T}_1), \sqrt{x_1 x_2} \delta_{\sqrt{s}}\right)$

Threshold-scan around $\sqrt{s} = 2m_{\tau}$:

Colliding system, \sqrt{s} ($\delta_{\sqrt{s}}$ spread), \mathcal{L}_{int} , experiment	σ	N	
e^+e^- at 3.5538 GeV (1.47 MeV), 5.57 pb ⁻¹ , BES III	1.9 pb	10.4	[hh]
e^+e^- at $\sqrt{s} \approx m_T$ (1.24 MeV), 140 pb ⁻¹ , BES III	2.2 pb	310	
e^+e^- at $\sqrt{s} \approx m_T$ (1 MeV), 1 ab ⁻¹ , STCF	2.6 pb	$2.6 \cdot 10^{6}$	
e^+e^- at $\sqrt{s} \approx m_T$ (100 keV), 0.1 ab ⁻¹ , STCF	22 pb	$2.2\cdot 10^6$	

David d'Enterria (CERN

Ortho-ditauonium observation via $e^+e^- \rightarrow \tau_1$ fusion

Resonant s-channel production of ortho-ditauonium in e⁺e⁻ collisions:

Actual Breit-Wigner x-section reduced by >10⁷, down to 2–20 pb, due to: – ISR & beam-energy spread $\delta_{\sqrt{s}}$ (reduceable via monochromatization)

– Accurate knowledge of m_r peak position required for \sqrt{s} .

 $Threshold-scan around \sqrt{s} = 2m_{\tau} : \sigma^{actual}(e^+e^- \rightarrow T_1) = \frac{12\pi^2\Gamma_{e^+e^-}(T_1)}{m_{\tau}} \int_0^1 dx_1 \int_0^1 dx_2 f_{e^+/e^-}(x_1, s) f_{e^+/e^+}(x_2, s) V_2(\sqrt{x_1x_2s}; m_{\tau}, \Gamma_{tot}(T_1), \sqrt{x_1x_2}\delta_{\sqrt{s}})$

Colliding system, \sqrt{s} ($\delta_{\sqrt{s}}$ spread), \mathcal{L}_{int} , experiment		σ		Ν			S/\sqrt{B}
	\mathcal{T}_1	$\tau^+\tau^-$	$\mu^+\mu^-$	\mathcal{T}_1	$\mathcal{T}_1 \to \mu^+ \mu^-$	$\mu^+\mu^-$	
e^+e^- at 3.5538 GeV (1.47 MeV), 5.57 pb ⁻¹ , BES III	1.9 pb	117 pb	6.88 nb	10.4	2.1	38 300	0.01σ
e^+e^- at $\sqrt{s} \approx m_T$ (1.24 MeV), 140 pb ⁻¹ , BES III	2.2 pb	103 pb	6.88 nb	310	63	$9.63 \cdot 10^5$	0.06σ
e^+e^- at $\sqrt{s} \approx m_T$ (1 MeV), 1 ab ⁻¹ , STCF	2.6 pb	95 pb	6.88 nb	$2.6 \cdot 10^{6}$	$5.3 \cdot 10^{5}$	6.88 · 10 ⁹	6.4σ
e^+e^- at $\sqrt{s} \approx m_T$ (100 keV), 0.1 ab ⁻¹ , STCF	22 pb	46 pb	6.88 nb	$2.2\cdot 10^6$	$4.5 \cdot 10^{5}$	$6.88 \cdot 10^8$	17σ

Ortho- τ_1 observable at STCF (6.4 σ) on top of $\mu^+\mu^-$ continuum in default run (1 ab⁻¹)

Note: Ditauonium contributes 2% of the di-tau x-section at $\sqrt{s} = 2m_{\tau} at STCF$ DIS 2024, Apr'24 David d'Enterria (CERN)

Ultraprecise tau mass via $e^+e^- \rightarrow T_1 \rightarrow \mu^+\mu^-$

STCF with 0.1-MeV monochromatization & 4 mass points runs (0.1 ab⁻¹ each) can determine very accurately peak excess of μ⁺μ⁻ events corresponding to

the ortho- τ_1 resonant mass point (provided true m_r is known to within ±50 keV):

The accuracy of the m(τ₁) position depends only on the accuracy of the beam energy calibration:

With BES-III (BEMS method): $\Delta_{\sqrt{s}}=10^{-5}$ $\Rightarrow O(25 \text{ keV})$ tau mass precision

- Impact of ultraprecise m_τ:
- Improved LFU tests ($\propto m_{e,\mu}^{5}/m_{\tau}^{5}$)
- CKM $|V_{ij}|$ elements from τ decays
- Any other SM checks that parametrically depend on ratios of e,μ,τ masses

Ortho-ditauonium via DY+j production at the LHC

Drell-Yan production of ortho-ditauonium + jet in pp colls. at 14 TeV:

Back-to-back jet required to boost ortho- τ_1 decay (displaced secondary dimuon vertex) & eliminate DY backgds. Only combinatorial heavy-Q dimuon sources left. Cross sections at ATLAS/CMS, ALICE/LHCb: 10⁴

Colliding system, \sqrt{s} , \mathcal{L}_{int} , detector	σ_{1}	NLO	$N(\mathcal{T}$	(1 + j)	with $L_{xy} > 30 (100) \mu \text{m}$		
	$\mathcal{T}_1 + X$	$\mathcal{T}_1 + j$	${\cal T}_1 ightarrow e^+ e^-$	$\mathcal{T}_1 \to \mu^+ \mu^-$	$\mathcal{T}_1 \to \ell^+ \ell^-$	$\mathcal{T}_1 \to \mu^+ \mu^-$	
p-p at 14 TeV, 3 ab ⁻¹ , ATLAS/CMS	42 ⁺¹¹ ₋₁₉ fb	$18 \pm 9 \text{ fb}$	1100	1100	130 (10)	130 (10)	
p-p at 14 TeV, 300 fb ⁻¹ , LHCb	42 ⁺¹¹ ₋₁₉ fb	$18 \pm 9 \text{ fb}$	110	110	5 (-)	5 (-)	
p-p at 114.6 GeV, 10 fb ⁻¹ , ALICE/LHCb	2.2 ^{+0.3} _{-0.4} fb	$1 \pm 0.5 \text{ fb}$	<10	<10	_	_	

About 130 (10) displaced dimuon events with L_{xy} > 30 (100) μm expected in ATLAS/CMS (3 ab⁻¹) Observation feasible (even with less int. lumi)!

Summary (I)

First-ever comprehensive study of ditauonium production/detection in the lab:

- → Unobserved. Heaviest & most compact leptonic "atomic" system.
- → Tests of bound QED & CPT symmetries at high-mass (BSM?).
- → Ultraprecise τ mass extraction possible via $e^+e^- \rightarrow \tau_1 \rightarrow \mu^+\mu^-$

Para-ditauonium: Observable via $\gamma\gamma$ fusion at high-lumi e⁺e⁻ colliders:

 Requires accurate in-situ measure of overlapping ccbar resonances.

m

- Stat. significance (multi-Gaussian $m_{\gamma\gamma}$ fit): S(Belle-II/FCC-ee) $\approx 3\sigma, 5\sigma$

Ortho-ditauonium: Observable as s-channel resonance at STCF e^+e^- at $\sqrt{s} = 2m_{\tau}$:

- Dimuon excess (>6σ) in a nominal STFC year (1 ab⁻¹)
- With 0.1-MeV beam monochrom. tau mass with 25-keV (or better) precision (beam calibration).

DIS 2024, Apr'24

17/18

David d'Enterria (CERN)

Summary (II)

First-ever comprehensive study of ditauonium production/detection in the lab:

- → Unobserved. Heaviest & most compact leptonic "atomic" system.
- → Tests of bound QED & CPT symmetries at high-mass (BSM?).
- → Ultraprecise τ mass extraction possible via $e^+e^- \rightarrow \tau_1 \rightarrow \mu^+\mu^-$

Para-ditauonium: Observable via $\gamma\gamma$ fusion at high-lumi e⁺e⁻ colliders:

 Requires accurate in-situ measure of overlapping ccbar resonances.

m

- Stat. significance (multi-Gaussian $m_{\gamma\gamma}$ fit): S(Belle-II/FCC-ee) $\approx 3\sigma, 5\sigma$

Ortho-ditauonium+jet: Observable in DY production in p-p collisions at the LHC:

- N_{evts} =130 (10) displaced dimuon with L_{xy} > 30 (100) µm at ATLAS/CMS (3 ab⁻¹).
- Observation feasible (even with less int. lumi)!

DIS 2024, Apr'24

18/18

David d'Enterria (CERN)

Backup slides

Ditauonium partial widths & decays

			5	T state	m_X (MeV)	J ^{PC}	Γ _{tot} (eV)	Lifetime (fs)	Decay mode	Γ_{X} (eV)	\mathcal{B}_X
			1	1 ¹ S ₀ 355	3.696 ± 0.240	0-+	0.02384	27.60	γγ	0.018533	77.72%
									$\gamma e^+ e^-$	$4.28\cdot 10^{-4}$	1.79%
									$\gamma \mu^+ \mu^-$	$1.24 \cdot 10^{-4}$	0.52%
									$\gamma q \overline{q}$	$2.20\cdot 10^{-4}$	0.92%
									$e^+e^-e^+e^-$	$2.32 \cdot 10^{-6}$	0.0094%
									$e^+e^-\mu^+\mu^-$	$1.38 \cdot 10^{-6}$	0.0058%
Tstate	my (MeV)	JPC	Let (eV)	Lifetime (fs)	Decay mode	Г	(eV)	Br	$e^+e^-q\overline{q}$	$1.20\cdot 10^{-6}$	0.0050%
.2			- 101 (/			- 4			$\mu^+\mu^-\mu^+\mu^-$	1.65 · 10-7	0.00069%
$1^{3}S_{1}$	3553.696 ± 0.240	1	0.03159	20.83	$e^+e^-(\gamma)$	0.0	06436	20.37%	$\mu^+\mu^-q\overline{q}$	$2.72 \cdot 10^{-7}$	0.0011%
					 e⁺e[−] 	2.	$95 \cdot 10^{-3}$	9.33%	<u>qqq'q'</u>	8.23 · 10 ⁻⁸	0.00035%
					 e⁺e⁻γ 	3.	$49 \cdot 10^{-3}$	11.04%	$(2)\tau \rightarrow X$	0.004535	19.02%
					$\mu^+\mu^-(\gamma)$	0.0	06436	20.37%			
					ο μ ⁺ μ ⁻	6.	$10 \cdot 10^{-3}$	19.30%			
					 μ⁺μ⁻γ 	3.	$38 \cdot 10^{-4}$	1.07%			
					$q\overline{q}(\gamma)$	0.0	1416	44.82%			
					YYY	1.62	· 10 ⁻⁵	0.051%			
					e ⁺ e ⁻ e ⁺ e ⁻	5.55	· 10 ⁻⁶	0.0176%			
					$e^+e^-\mu^+\mu^-$	4.21	· 10 ⁻⁶	0.0133%			
					$e^+e^-q\overline{q}$	1.85	· 10 ⁻⁶	0.0058%			
					$\mu^+\mu^-\mu^+\mu^-$	1.23	· 10 ⁻⁷	O(10 ⁻⁶)			
					$\mu^+\mu^-q\overline{q}$	7.36	· 10 ⁻⁸	O (10 ⁻⁶)			
					999 q	9.73	· 10 ⁻⁹	O (10 ⁻⁷)			
					$v_{\tau}\bar{v}_{\tau}$	1.32	· 10 ⁻⁸	O (10 ⁻⁷)			
					VeVe	4.30	· 10 ⁻¹¹	O(10 ⁻⁹)			
					$v_{\mu}\bar{v}_{\mu}$	4.30	· 10-11	O(10 ⁻⁹)			
					$(2)\tau \rightarrow X$	0.0	04535	14.35%			

Para-ditauonium production via yy collisions

Cross sections for signal & backgrounds computed in the Weizsäcker-Williams approx. (EPA) for γγ collisions (implemented in HelacOnia2.6/gamma-UPC):

$$\sigma(ab \to ab + X) = 4\pi^2 (2J + 1 \left(\frac{\Gamma_{\gamma\gamma}(X)}{m_X^2} \frac{d\mathcal{L}_{\gamma\gamma}^{(ab)}}{dW_{\gamma\gamma}} \right)_{W_{\gamma\gamma} = m_X}$$

Diphoton charmonium resonances within $m_{\gamma\gamma} \approx 2.9-3.7$ GeV:

Resonance	J^{PC}	m_X (MeV)	Γ_{tot} (MeV)	$\Gamma_{\gamma\gamma}$ (MeV)	$\mathcal{B}_{\gamma\gamma}$
${\mathcal T}_0$	0-+	3553.696 ± 0.240	$2.28\cdot 10^{-8}$	$1.83\cdot 10^{-8}$	~80%
$\eta_{\rm c}(1{ m S})$	0^{-+}	2983.9 ± 0.5	32.0 ± 0.7	$(5.06\pm 0.34)\cdot 10^{-3}$	$(0.0158\pm 0.0011)\%$
$\eta_{\rm c}(2{\rm S})$	0^{-+}	3637.5 ± 1.1	11.3 ± 3.1	$(2.15 \pm 1.47) \cdot 10^{-3}$	$(0.019\pm 0.013)\%$
χ_{c0}	0^{++}	3414.71 ± 0.30	10.8 ± 0.6	$(2.203\pm 0.097)\cdot 10^{-3}$	$(0.0204 \pm 0.0009)\%$
Xc2	2++	3556.17 ± 0.07	1.97 ± 0.09	$(5.614 \pm 0.197) \cdot 10^{-4}$	$(0.0285\pm 0.0010)\%$

→ Charmonia resonances have $\mathcal{O}(\text{keV})$ diphoton widths: $\mathcal{O}(10^5)$ larger than para- τ_0 . But, the diphoton BR is $\mathcal{O}(10^4)$ larger for para- τ_0 than for c-cbar states.

γγ collision x-sections (signal & backgds)

- Cross sections for signal & backgrounds computed in the Weizsäcker-Williams approximation (EPA) for γγ collisions via gamma-UPC: 2207.03012 [hep-ph].
- σ (LbL) computed with MG5@NLO (virtual box) with same photon fluxes.
- Results for e⁺e⁻ and ultraperipheral p-p, p-A & A-A collisions:

Colliding system, c.m. energy, \mathcal{L}_{int} , exp.	$\sigma imes \mathcal{B}_{\gamma\gamma}$							$N imes \mathcal{B}_{\gamma\gamma}$		
	$\eta_{\rm c}(1{ m S})$	$\eta_{\rm c}(2{\rm S})$	$\chi_{\rm c,0}(1{\rm P})$	$\chi_{c,2}(1P)$	LbL	${\mathcal T}_0$	${\cal T}_0$	$\chi_{c,2}(1P)$		
e^+e^- at 3.78 GeV, 20 fb ⁻¹ , BES III	120 fb	3.6 ab	15 ab	13 ab	30 ab	0.25 ab	-	_		
e^+e^- at 10.6 GeV, 50 ab ⁻¹ , Belle II	1.7 fb	0.35 fb	0.52 fb	0.77 fb	1.7 fb	0.015 fb	750	38 500		
e^+e^- at 91.2 GeV, 50 ab ⁻¹ , FCC-ee	11 fb	2.8 fb	3.9 fb	6.0 fb	12 fb	0.11 fb	5 600	$3\cdot 10^5$		
p-p at 14 TeV, 300 fb ⁻¹ , LHC	7.9 fb	2.0 fb	2.8 fb	4.3 fb	6.3 fb	0.08 fb	24	1290		
p-Pb at 8.8 TeV, 0.6 pb ⁻¹ , LHC	25 pb	6.3 pb	8.7 pb	13 pb	21 pb	0.25 pb	0.15	8		
Pb-Pb at 5.5 TeV, 2 nb ⁻¹ , LHC	61 nb	15 nb	21 nb	31 nb	62 nb	0.59 nb	1.2	62		

(~10% uncertainties, today)

- → Relative production x-sections: $\eta_c(1S):\chi_{c2}(1P):\chi_{c0}(1P):\eta_c(2S):\tau_0 \approx 100:50:30:25:1$ driven by their different $\Gamma^2(\gamma\gamma)/(\Gamma(tot)\cdot m_{\chi}^2)$ ratios.
- → Cross sections increase with \sqrt{s} and Z⁴:

Largest x-sections (0.6 nb) in PbPb UPC (but handful of evts expected at LHCb) Largest yields: 750, 5600 counts at Belle-II, FCC-ee thanks to \mathscr{L}_{int} = 50 ab⁻¹.

Para-ditauonium signal extraction

1-million events generated for signal & backgrounds. Run MVA (BDT) with 12 different single-γ and γ-pair kinematic variables for signal/backgds separation:
 (i) Strong discrimination power (factor of ~20) of LbL continuum from signal.
 (ii) No discrimination achieved for overlapping charmonia (decay γ angular modulation

of tensor $\chi_{_{C2}}$ different than scalar $\tau_{_0}$ signal, but $\times 50$ suppressed yields)

- Signal extracted through multi-Gaussian m_{yy} fit, by considering:
- → η_c(1S): No overlap w/ signal ("std.candle"):
 0.5M clean evts to fully control E_γ scale&res.
 plus exp. & theory uncertainties.
- → χ_{c0} , $\eta_c(2S)$: Partial overlap with signal. Exploit ~100M $\gamma\gamma \rightarrow \chi_{c0}$, $\eta_c \rightarrow X$ decays with ×50 larger BRs (e.g. X=3- and 4-mesons) to fully remove their contamination.
- → χ_{c2} : Full overlap with signal! Exploit alternative $\gamma\gamma \rightarrow \chi_{c2} \rightarrow X$ decays (e.g. 11M evts.

for X=4 π) to determine its lineshape to within $\mathcal{O}(0.2\%)$.

Reconstructed yields (LbL subtracted)