

Andreas Crivellin

PSI & UZH

New Higgses at the Electroweak Scale and Differential Top-Quark Distributions DIS, Grenoble, 09.04.2024

Hints for new Scalars at 95 GeV & 151.5 GeV

- •95 GeV: Only inclusive searches at LHC
- 151.5 GeV: SM Higgs γγ and Zγ side-bands in associated production channels (no sign in ZZ)

3.8σ & 4.7σ global significance

Is the 151.5 GeV Higgs a Triplet (Δ)

- Δ^0 decays dominantly to WW and only suppressed to ZZ
- Positive shift in the W mass as preferred by the EW fit

"(pp ~ dod t)

130

 $m_{\Delta^0} \approx m_{\Delta^{\pm}}$ [GeV]

140

 $\sigma_{(pp \to \Delta^{\pm} \Delta^{\mp})}$

120

1.2

1.0

0.8

0.6

0.4

0.2

110

σ [pb]

Drell-Yan production at the LHC

150

 $\operatorname{Br}(\Delta^{\pm} \to XY)$

$h \rightarrow \gamma \gamma + X$ from ATLAS

Triplet consistently explains $h \rightarrow \gamma \gamma + X$ excesses

Moriond EW Update (ATLAS)

ATLAS-CONF-2024-005

- New excess in γγ+τ
- Background refitting further increases significance

Compatible with the triplet

Differential Top-Quark Distributions

• $\Delta \phi^{e\mu}$ angle between the leptons from the W decays

New Physics pollution of this SM measurement?

New Physics in Top-Quark Distributions

- ATLAS analysis normalized to the total cross section
- only sensitive to the shape of NP
- NP at small angels can explain deficit at large angles
- Associated production of new scalars decaying to WW and bb has a top-like signature

Related to the 95 GeV and 151.5 GeV hints?

Simplified Model: $H \rightarrow SS' \rightarrow WWbb$ 2308.07953

 Fix m_s=151.5GeV and m_{s'}=95GeV by the hints for narrow resonances. Weak m_μ (270GeV) dependence.

Also deficit at large $\Delta \phi^{e\mu} \& m^{e\mu}$ explained

Simplified Model: $H \rightarrow SS' \rightarrow WWbb$ 2308.07953

Monte Carlo	$\chi^2_{ m SM}$	$\chi^2_{ m NP}$	$\sigma_{ m NP}$	Sig.	$m_S[\text{GeV}]$
Powheg+Pyhtia8	213	102	9pb	10.5σ	143 - 156
aMC@NLO+Herwig7.1.3	102	68	$5\mathrm{pb}$	5.8σ	
aMC@NLO+Pythia8	291	163	$10 \mathrm{pb}$	11.3σ	148 - 157
Powheg+Herwig7.1.3	261	126	$10 \mathrm{pb}$	11.6σ	149 - 156
Powheg+Pythia8 (rew)	69	35	$5\mathrm{pb}$	5.8σ	
Powheg+Herwig7.0.4	294	126	$12 \mathrm{pb}$	13.0σ	149 - 156
Average	182	88	9pb	9.6σ	143 - 157

Improvement of SM prediction imperative!

Agreement with data significantly improved (>5 σ)

Is 95 GeV a singlet? Relation to 151.5 GeV?

S'(95): Singlet
 decays
 dominantly
 to bb

 S(151.5): decays dominantly to WW

Consistent with 95 GeV γγ signal strength & a mass of S with 151.5 GeV

Δ 2HDMS and top-quark production

Field	$SU(2)_L$	$U(1)_Y$
ϕ_s	2	0
ϕ_2	2	1/2
ϕ_1	2	1/2
Δ	3	0

Explains:

- Top-quark differential distributions
- Di-photon excesses
- Resonant top-quark production Elevated 4-top cross section

G. Coloretti, A.C. and B. Mellado, 2312.17314

Combined explanation possible

Conclusions and Outlook

- Hints for narrow resonances at 95 GeV & 151.5 GeV
- Significant tensions in top quark differential distributions (>5σ)
- Can be explained via pp→H→SS' with masses consistent with the narrow resonances
- 95 GeV decays to dominantly to bb singlet?
- 151.5 GeV decays dominantly to WW => triplet?
- γγ+X excesses consistent with DY production of triplet
- New CMS excess in ttZ explained

Most significant hints for new particles at the LHC

Backup

Multi-leptons history

Fixed final states and phase-space defined by fixed model parameters. <u>NO tuning, NO scanning</u>

Update same final states with more data in Run 2

Study new final states where excesses predicted and data available in Run 1 and Run 2 (e.g., SS0b, 3l0b, ZW0b)

J.Phys. G46 (2019) no.11, 115001 JHEP 1910 (2019) 157 Chin.Phys.C 44 (2020) 6, 063103 Physics Letters B 811 (2020) 135964 Eur.Phys.J.C 81 (2021) 365

Talk of Bruce Mellado at ZPW 2023

Higgs Sector of the SM

$$L_{\Phi}^{SM} = \mu^{2} \Phi^{\dagger} \Phi + \frac{\lambda}{4} \left(\Phi^{\dagger} \Phi \right)^{2}$$
$$L_{Y}^{SM} = -Y^{d} \overline{Q} \Phi d - Y^{u} \overline{Q} \overline{\Phi} u - Y^{\ell} \overline{Q} \Phi \ell$$

- Custodial symmetry
- Single Higgs gives rise to all fermion masses
- Is the Higgs sector really minimal?
- Extensions possible if the effect on the ρ parameter SM-Higgs signal strength is small
- Scalars decaying to W bosons and/or produced in associate production weakly constrained

EW scale extension of the SM Higgs sector possible

Multi-lepton Anomalies

• Deviations from the SM predictions in LHC processes involving two or more leptons, with and without (b-)jets

Final state	Characteristics	SM backgrounds	Significance
$\ell^+\ell^-$ +(<i>b</i> -jets) ^{62, 65, 66}	$m_{\ell\ell} < 100 \text{GeV}, (1b, 2b)$	$t\bar{t},Wt$	$> 5\sigma$
$\ell^+\ell^-$ +(no jet) ^{61,67}	$m_{\ell\ell} < 100{ m GeV}$	W^+W^-	$\approx 3\sigma$
$\ell^{\pm}\ell^{\pm}, 3\ell$ + (<i>b</i> -jets) ^{64, 68, 69}	Moderate H_T	$tar{t}W^{\pm},tar{t}tar{t}$	$> 3\sigma$
$\ell^{\pm}\ell^{\pm}, 3\ell, (\text{no } b\text{-jet})^{63, 70, 71}$	In association with h	$W^{\pm}h(125), WWW$	$\gtrsim 4\sigma$
$Z(\rightarrow \ell \ell)\ell$, (no <i>b</i> -jet) ^{62,72}	$p_{\mathrm{T}}^{\mathrm{Z}} < 100\mathrm{GeV}$	ZW^{\pm}	$> 3\sigma$

• 1711.07874 found m_s=150±5GeV Bud

A.C., B. Mellado, arXiv:2309.03870

Buddenbrock et al. arXiv:1901.05300 O. Fischer et al. arXiv: 2109.06065

- Here focus on:
 - -WW
 - Top-quark differential distributions

Statistically significant, motivate new EW scale scalars

PAUL SCHERRER INSTITUT

Low mass WW seraches

- No dedicated low-mass
 WW search
- Recast SM Higgs analyses

SM Higgs rescaled by 1.16

Room for NP

Simulation and Setup

- Opposite sign, different flavour leptons with full jet veto
- New scalar H produced via gluon fusion
- Correcting for fast simulation by tuning signal vial smearing to the SM Higgs signal

Simulation validated

Low mass WW resonances searches

ATLAS and CMS combination

• New physics effect preferred over the whole range

Related to 95GeV and 151GeV?

Hints for a 152 GeV scalar

- PAUL SCHERRER INSTITUT
- Motivated by the mass range of 1711.07874 (not included)

• Hints for a resonance decaying to photons and $Z\gamma$

New Scalar (Higgs) boson? Relation to DM?

Differential Top-Quark Distributions

New Physics pollution of this SM measurement?