

CMS jet measurements and constraints on PDFs and α_s

31st International Workshop on Deep Inelastic Scattering | 8–12 April 2024 | Grenoble, France

Daniel Savoiu on behalf of the CMS Collaboration

Jets & QCD at the LHC

- crucial for understanding *proton structure* & *strong interaction* up to the highest accessible energies
- measurements provide essential experimental input for improving the *parton distribution functions* (PDFs) of the proton and the *strong coupling* α_s
- many recent results from CMS, presenting only a personal selection today

jets → measurement

Jet azimuthal correlations (preliminary)

[arXiv:<u>2305.16930]</u> [<u>CMS-PAS-SMP-22-005</u>]

Jet azimuthal correlations (preliminary)

 extraction of α_s(m_z) from comparison to fixed-order pQCD predictions at **NLO** using several global PDF sets + nonperturbative & electroweak corrections

 $\mathsf{R}_{\Delta \phi}(\mathsf{p}_{\mathsf{T}})$

CMS

Preliminarv

31st International Workshop on Deep Inelastic Scattering | 8–12 April 2024 | Grenoble, France

[arXiv:2305.16930

CMS-PAS-SMP-22-005

NNPDF31nlo

CM.

134 fb⁻¹ (13 TeV)

Energy correlators (EECs)

- substructure observables that describe the correlations of kinematic properties of particles inside jets, weighted by energy → E_iE_j/E² or E_iE_jE_k/E³
- calculated based on *pairs* (E2C) or *triplets* (E3C) of constituent particles
- ordered by *angular separation* $x_L \rightarrow$ probe timescale of hadron formation

Energy correlators (EECs)

[arXiv:<u>2402.13864</u>] Submitted to *PRL*

 EECs measured in bins of jet p_T and compared to predictions from MC generators <u>PYTHIA 8</u>, Herwig 7 and SHERPA 2

best overall description

perform better in some regions

Strong coupling from EECs

ratio of E3C and E2C sensitive to $\alpha_{s}(m_{7})$:

- approx. linear in $\alpha_s \ln x_1$
- PDF dependence largely suppressed

1.4

1.3

1.2

[arXiv:2402.13864]

Submitted to PRL

Inclusive jet production at $\sqrt{s} = 13$ TeV

comparison to fixed-order pQCD theory at **NNLO** and **NLO+NLL**

+ corrections for non-perturbative (NP)

improved agreement at NNLO

[arXiv:2111.10431] [JHEP 02 (2022) 142] + addendum [JHEP 12 (2022) 035]

Multidifferential dijet cross sections

- double- & triple-differential cross section measured as a function of dijet invariant mass m_{1,2} for anti-k_T jets with R = 0.4 & 0.8
- data compared to fixed-order theory at NNLO pQCD from NNLOJET + fastNLO

disentangle regions of different momentum fractions x carried by partons \rightarrow PDF fits

Multidifferential dijet cross sections

[arXiv:2312.16669] Submitted to EPJC

Inclusive jet production at $\sqrt{s} = 5.02$ TeV

complementary measurement at lower center-of-mass energy using anti- k_T jets with R = 0.4

- data/theory agreement studied for *NLO* & *NNLO* pQCD, different *PDFs*, different central *scale choices* (H_T, p_T^{jet})
- can be used as an input to future QCD fits

31st International Workshop on Deep Inelastic Scattering | 8–12 April 2024 | Grenoble, France

Primary Lund plane density

- Lund jet plane represents phase space of emissions inside jets
 - anti-k_T jets are declustered iteratively using Cambridge–Aachen algorithm
 - density of emissions measured as a function of ln(k_T / GeV) and ln(1 / ΔR):

 $\frac{1}{N_{\rm jets}} \frac{{\rm d}^2 N_{\rm emissions}}{{\rm d}\ln(k_{\rm T}) {\rm d}\ln(R/\Delta R)}$

$$\approx \frac{2}{\pi} C_{\rm R} \alpha_{\rm S}(k_{\rm T})$$

Applications

- improve modeling of *parton shower*,
 hadronization, underlying event, ...
- heavy-flavor tagging due to unique signatures of boosted color-singlets

Primary Lund plane density

measured for both small (R = 0.4) and large-radius jets (R = 0.8) with p_T > 700 GeV & |y| < 1.7, using only *charged constituents*

test performance of different generators, tunes, parton showers

- presented recent jet measurements from the CMS Collaboration
- diverse measurement programs, targeting large range of observables, such as jet cross sections, jet substructure, event shapes
- measurements provide essential input for determinations of strong coupling α_s(m_z) and parton distributions, together with theory predictions up to NNLO accuracy

Thank you for your attention! Questions?

Backup

Inclusive jet production @ 5.02 TeV

Multidifferential dijet cross sections

[arXiv:2312.16669] Submitted to EPJC

comparison to fixed-order theory predictions @ NNLO × nonperturbative, electroweak corrections

in general, data are well described by theory (shown here: R = 0.8)

Inclusive jet production @ 13 TeV

comparison to fixed-order pQCD theory at NNLO and NLO+NLL

+ corrections for non-perturbative (*NP*) and electroweak (*EW*) contributions

Inclusive jet production @ 13 TeV

• determination of PDFs & $\alpha_s(m_Z)$ up to **NNLO**

 $\alpha_{\rm s}(m_{\rm Z})_{\rm NNLO} = 0.1166 \ (14)_{\rm fit} \ (7)_{\rm model} \ (4)_{\rm scale} \ (1)_{\rm param.}$

 with *tt* data: limits on *Wilson coefficients* for four-quark contact interactions

CI	MS	SMEFT N	LO 13 T	eV jets &	& t t +	IERA
	_ 50	···· 95%	CL fit+model	l+param. unc.		
	I = 30	-68%	- 68% CL fit+model+param. unc.			
- 68% CL fit unc. only						
	Axi	al vector-lik	e	····		
	Vec	ctor-like		·····	+ ·····	
	Lef	t-handed	·····	• · · · ·		
- -	-0.002	-0.0015		-0.0005	i)
					$c_{1}^{}/\Lambda^{2}$ [TeV ⁻²]

Primary Lund plane density

- test performance of different generators, tunes, parton showers
- measurement can be used as an input to further improve these models

D. Savoiu

31st International Workshop on Deep Inelastic Scattering | 8–12 April 2024 | Grenoble, France

4.5

 10^{-2}

Primary Lund plane density

- comparison to predictions in the *soft* and collinear limit using the one-loop β function for the running of α_s
- qualitative description of emission density as a function of emission k_T

31st International Workshop on Deep Inelastic Scattering | 8–12 April 2024 | Grenoble, France

Ê

Emission density $\rho(k_{T}, \Delta$