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Objectives

m Introduce a Model that can incorporate Error on Errors

m Examining how this model behaves for both uncorrelated and
correlated systematic errors

m Investigate what this model tells us about 2 Data Sets - ATLAS W,Z
Data and ATLAS 7 TeV Inclusive Jet Distributions

m A brief investigation into de-correlation
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Introduction

m Experimental data is becoming increasingly precise
m Experimental Errors are now dominated by systematic uncertainties
m Significant Errors on these systematic uncertainties

m So we need to include these “errors on errors” to correctly
determine the errors in PDF fits
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Introduction

Experimental data is becoming increasingly precise
Experimental Errors are now dominated by systematic uncertainties
Significant Errors on these systematic uncertainties

So we need to include these “errors on errors” to correctly
determine the errors in PDF fits

We need to depart from the simple Gaussian treatment of errors if
we want to include these "Error on Errors”
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Including Error on Errors 1

Gaussian

m Consider a set of data, y. The probability of y can be written
P(ylu, 0), where u are parameters of interest and 6 are nuisance
parameters that are required for the correctness of the model.

"Cowan arXiv:1809.05778v3
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Including Error on Errors 1

Gaussian

m Consider a set of data, y. The probability of y can be written
P(ylu, 0), where u are parameters of interest and 6 are nuisance
parameters that are required for the correctness of the model.

m Let 0 = (04, ..., 0n) be independent Gaussian distributed values
u = (uy, ..., uy), with standard deviations o, = (oy,..., Oy ):

"Cowan arXiv:1809.05778v3
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Including Error on Errors 1

Gaussian

m Consider a set of data, y. The probability of y can be written
P(ylu, 0), where u are parameters of interest and 6 are nuisance
parameters that are required for the correctness of the model.

m Let 0 = (04, ..., 0n) be independent Gaussian distributed values
u = (uy, ..., uy), with standard deviations o, = (oy,..., Oy ):

L(w, 6) = P(y, ulu, 8) = P(ylu, 0)P(ulf)

N
1 — (u—0;)2/202
= Pyl 8) [ ] Z——e /2% 1)
iy V2amoy,

"Cowan arXiv:1809.05778v3
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Including Error on Errors 22

Gaussian plus Gamma

m Model the estimated variances, v;, of Gﬁi, as Gamma distributed

gives:
N i
L(1,8,02) = P(ylh,0) [ | e =0"/20% B yoimt g
’ 1 u/ 1
-1 V2mnoy, o) !
1 1
= P

m s is defined as the relative uncertainty in the estimate of the
systematic error. The parameters r; can therefore be referred to as
the “error on errors”.

2Cowan arXiv:1809.05778v3
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Including Error on Errors 3

Gaussian plus Gamma = t-distribution

m This model can be identically reinterpreted as a Student’s
t-distribution

N F(VI;_1 ) t2 T2
(0,05 = Py O T [ 2ot ( + v,-> @)
where t; = —“’}?" and v, = 217

m So we can treat our nuisance parameters as t-distributed!
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m Consider the case:

M
Yi = dj + errors = d; + 0;z; + oy ty, + Z Bt (3)
j=1

where for each observable y; we have

m One statistical error o;, with a z; that is a Normally distributed
fluctuating variable.

m One uncorrelated systematic error o, with a t,, that is a
t-distributed fluctuating variable with dof of v = 1/2r§2

m M correlated systematic errors, 3, each with a fluctuation ¢/ that

are t-distributed with dof of v = 1/2r)2<2. These fluctuations are the
same for all i.
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Treating our z;, t,, and t’ as independent
m The likelihood function can be written up to some constants as:

v+1

N M / v+l
1(y'_d'_t/6/_Z': Bt) t.2 2
LocHexp [—2 : i u2 J=1 0 <1+i’/>
i—1

Oj

M t-/2 _VT1
14+ 4
SUGEy “

m Naturally leading to the Loglikehihood equation:

N I\ 2
mj — d; — oy ty, — >_; Bt
2 _ Z ! 1 uj tu; j Pt

i=1

N /2
—|—v+1ZLn<‘I+t”’> v+1ZLn< ) (5)

i=1
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Treating our z;, t,, and t’ as independent (Cont.)
m |f we minimize with respect to t,, we obtain:

2 2
5051 & cru, v+ 1
t, 01.2;_ —di— ZB/ "‘tu, 02 T
I—Z/‘B/‘j Ou
_ . —

I
m Minimizing with respect to ¢/ yields

N 2
D B v+ 1
3 IAY: U l
=t D=
+ () +<<ZU2>+ y )z‘,+ 0

i=1 "

D=

_i (yl - df - O—U,'tU,' - Z/A;,é/’ Bljt}/)ﬁ)l]/

2
(Or
i=1 i

m Solved Simultaneously. t, solved analytically, t/ has to be fitted
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Behaviourasr — 0
mAsr—0,v—o00:

2 N M
Yi—di—oyty — Zj ijt}/ 2 12
—2lnL = Z( - +> B4t (8)
i=1 j

m Taking derivatives with respect to f,, and setting to zero gives:

_ (0

o(—2LnL) _ fy = (yi—di—2_; Bjt/) @

oty, 0% + 0'%/,

m Substituting equation (7) into (6) gives our expected Gaussian
formulation:
N 2 M
(vi—di—>_;Bjt)) ’

—2LnL = I t' 8
R @
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Expectation and Variance of x2 as a Function of r

m Let's consider the case: y; = d; + 0iz; + oy,
with z; ~ N(0,1), t,, ~ t(0,v = 1/2r3,).
i.e. focus on the uncorrelated systematic behaviour (3; = 0).

Note that for rpgg > 0, VAR[x2] > 2

o = Tois \

Note that for 15¢ > 0, x% > 1
evenifr,z = 7pise

/2 Var[Chi*2]

Graph of E[x?] as a Function of rp;y  Graph of Var[x?] as a Function of
for 4 different . (0; = oy, = 1) rpist for 4 different r,. (0; = oy, = 1)
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Standard Deviation of the Simple Mean as a Function of r

m Consider the case: y; = d; + 0,z; + oy ty,
with z; ~ N(0,1), t,, ~ t(0, v = 1/2r3,). Also let E[d]] = d

m The standard deviation of the simple mean,ymean = 3 1, yi/N, is:

VEN 02+ a2v/(v—2) \/Z, L EDC(re — 0)](0% + 02)

OMean =~
N N

m Table showing omean as a function of r and N (with o; = o, = 1)

"Dist N=2 N=3 N=5 | N=10 | N=100 | N=500 | — Dl ___ N —500
O (rpjg =0.001)

0.001 | 0995 | 0.819 | 0.630 | 0.449 | 0.142 | 0.064 1.000

0100 | 0991 | 0.814 | 0.641 | 0452 | 0143 | 0.064 1.005

0250 | 1.092 | 0.884 | 0679 | 0.481 | 0152 | 0.069 1.077

0.300 | 1.422 | 0.926 | 0.705 | 0.504 | 0.161 | 0.071 1.108

0408 | 1417 | 1.148 | 0.901 | 0.637 | 0.97 | 0.089 1.393

m This table gives the standard deviation for the fitted mean if r,. = 0.0001
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Standard Deviation of the Fitted Mean as a Function of r

m What happens if we minimize the x?, calculated with e = Ipist, With
respect to our mean?

m Table showing oFr as a function of r and N (with 0; = o, = 1)

—HT—— N=500
r N=2 N=3 N=5 N=10 N=100 N=500 Orpis=r z=0001
0.001 0.995 0.819 0.630 0.449 0.142 0.064 1.000
0.100 0.991 0.814 0.641 0.452 0.143 0.064 1.004
0.250 1.092 0.883 0.675 0.479 0.150 0.068 1.069
0.300 1122 0916 0.697 0.493 0.157 0.069 1.087
0.408 1.417 1.162 0.809 0.547 0.169 0.076 1.186

Data obtained using MC

m For Gaussian statistical errors and t-distributed uncorrelated systematic
errors:

N
OFT = Z E[X¢(re = ros)] (07 +03) / N
i—1
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Standard Deviation of the Mean Fitted Mean

m Graph on left shows ratio of e oo as a function of r and N.

. . oFit (Ipist=ry2=r) .
m Graph on right shows ratio of oFi (o —7 2 —0.001) as a function of r
and N.
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Expectation and Variance of x2 as a Function of r
m Consider the case of N observables each with a Gaussian statistical
and M t-distributed correlated systematic errors :

M
yi=di+oizi+ ) Byt

zi~N(0,1),t/ ~ t(0,v = 1/2rh,)

J=1
m In the case where rpist = r,2, and o; = 3 = 1:

Opmean = Tprrr
N M r v Elx*(d)] Iy OFIT(r 2=0.001) orr Oprir / Tpupan | Torin(ma=r 2=000)
2 2 0.001 500000 1.99949 2.05734 1.58114 1.58114 1.000 1.000
2 2 0.25 8 2.28779 2.31064 1.78103 1.78970 1.005 1.132
2 2 0.40824829 3 2.87634 2.98990 2.51644 2.32738 0.925 1.472
5 5 0.001 500000 4.99873 3.20452 2.28036 2.28036 1.000 1.000
5 5 0.25 8 5.42717 3.44951 2.62217 2.62208 1.000 1.150
5 5 0.40824829 3 6.53625 4.49232 3.81179 3.51314 0.922 1.541
10 5 0.001 500000 9.99746 4.58094 2.25832 2.25833 1.000 1.000
10 5 0.25 8 10.47021 4.68864 264291 2.63296 0.996 1.166
10 5 0.40824829 3 11.61824 5.53776 4.08220 3.48161 0.853 1.542
10 10 0.001 500000 9.99746 4.53088 3.17806 3.17806 1.000 1.000
10 10 0.25 8 10.37782 4.69332 3.67337 3.64109 0.991 1.146
10 10 0.40824829 3 11.91221 5.81006 5.40928 4.72917 0.874 1.488

where E[)(2 (d;)] means that E[XZ] calculated with a mean equal to d;
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ATLAS W,Z Data analysis®

This very precise data gives strong constraint on the strange quark.
However fit is poor x2/Npt ~ 1.9 for MSHT20 (NNLO). Ny = 61

122.00 160.00
120.00 15000
118.00
140.00
o 11600 o r=0.0001
£ £ 130,00 I
S 114.00 =} r=0.15
—r=0.3
120.00
112.00 —r=0.45
110,00 110.00
108.00 100.00
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0 20 40 60 80 100 120 140

r Number of t'

m Graph on the left shows the x? as a function of relative error,r.

m Graph on the right shows how x? is impacted by only considering the N
largest t’ for different relative errors: r = 0.0001, r = 0.15, r = 0.3,
r=20.45

3

https://www.hepdata.net/record/ins1502620 Tables 9 - 15
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ATLAS W,Z Data analysis
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m Graph shows the x? calculated using r = 0.001 as a function of
relative error, rp;s; of the simulated underlying systematic errors.

m Included is both the Expectation and the standard deviation

m Forax?of120r ~ 0.4
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ATLAS 7 TeV Inclusive Jet Distributions Analysis

m This ATLAS data*, combined with availability of NNLO corrections
provides constraints on the Gluon PDF at high x.

m Graph shows the x? or E[x?] as a function of relative error, r..

- Raw data refers to just the raw data provided by ATLAS. 140 Data points.
Difficult to fit all rapidity bins simultaneously. De-correlation refers to x2 calculated with small number (3) of the

"two point” systematic uncertainties de-correlated °
Other lines show the E[xz] using pseudo data produced using rp;s; = 0.0001, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5.

Elx*lor x*

005 o 015

4hnps://wwwhepdata.net/recorci/ins1 325553 - tables 7-12 for "R=0.6"

SMSHT20 arxiv:2012.04684
DIS 2024 8th April 2024
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ATLAS 7 TeV Inclusive Jet Distributions Analysis

m Graph shows E[x?], calculated with r,2 = 0.00001, where
systematic errors are sampled from t-distribution with d.o.f 1/2r3,.

m Line at 243.43 is x? calculated using r,2 = 0.0001 for de-correlated
data.
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—E[chi*2]  —chii*2Decorrelation pi/2 - - -chii*2 Decorrelation pi/4
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De-correlation

m Sometimes we use decorrelation techniques for systematic errors.

m E.g. would be when a systematic error is the calculated as the difference
between two different Monte Carlo runs with different input parameters.

m For the ATLAS 7 TeV Jet Data, as is done in the MSHT20 paper, we could
use a paramaterisation which allow data points that are distant in (y;, p’l)
space to have different systematic variations:

. 1 7T
log(p/, ) — log( p’J_ min) I3,‘( ) = Ltrig (r,0,1).Ltrig (4),0, 5) B!
log( p’L max — log( pli mm

XpL
2 7T

B2 = /1= Lug(r.0, 2Ly (6,0, 5 ) B!

Yj — Yj,min

Xy =
Yj,min — Yj,max

3
B2 = Lig(r,0.1)4/1 — Lig (6,0, 7) i
X
r= X2 +x2), ¢ = arctan (—y)
f s XL (4) _ tot
B 1 Liig (r,0.12.\/Lusg (.0, ) !
Z — Zmir
Lirig (Z, Zmin, Z = cos | 7T 7””’7)]
mg( min max ) [ (Zmaxfzmm

m |f we implement this for the , then if r = 0.0001, then the x2 = 243.43.
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Correlation Structure
m We can determine this by looking at the resulting correlation
structure obtained from Monte Carlo.
m For the MSHT20 decorrelation we have the simplified correlation
matrix:
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Correlation Structure

m So what happens if we change the 7t/2 to 7t/47?
m Firstly there is a big fall in x2. It goes from 243.43 to 199.18
m The Correlation matrix becomes:

m In some parts of the matrix this looks better, but in others worse
than the desired outcome!
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Conclusions

m We have shown how we can incorporate Errors on Errors into the
calculation of a x?

m Expected x? and Variance of x? increase as the relative errors of
the systematic errors increase

m We have noted that for both data sets r ~ 0.4. If we compare the
expected standard deviation of the mean, calculated with
e = 0.001, where the systematic errors have an rp;s; = 0.4 to that
where rpiss = 0.001 we obtain a ratio of approx. 1.2 — 1.5. This is
suggestive of using a tolerance in the region of 1.2 — 1.5 in these
test cases.

m When de-correlating systematic errors we need to be incredibly
careful about the correlation matrix that we are producing
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Closer Look at the Correlation Matrix - 7t/2 versus /4
In some parts of the correlation matrix using 7t/2 looks better, but in

other parts it looks worse.

Worse

Py
0.02572464|
0.23994183| 0.08333333
0.51009257| 0.0833333:
0.74286895| 0.08333333
0.95880057| 0.08333333
0.02572464|
0.23994183| 0.25]
0.51009257| 0.25
0.74286895| 5
0.93724088| 0.25]

Better

Matt Reader

00192284

0.02572464

065907332
060011925
0.80746022
045112934
-0.0088366
0.99974556
-0.8614181
0.12004887
0.23849793
-0.0207453

0.08530261

Worse

090795241

0.23994183 0.51009257 0.74286895 _0.93724088]

1829543
-0.8614181
0.99974559
0.28894148|
-0.1066135
-0.0796406

DIS 2024

0.02322744  -0.3757966|
038337488 -0.0189:

0.88563822 0.99974545|

/2

/4
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Treating our r;, r,, and r’ as 0 Correlated - Model 2
1

m In this scenario we obtain the Loglikehihood equation:

N N\ 2
i — b — Oyl — X Bl
—2LnL =) (y’ I~ Ol = 2| B”/)

o
i=1 !

N 2 M 2
+Z(v+1)Ln(1+r"’)+(v+M)Ln<1+Z’ r’) (9)
v v

i=1
m Again we obtain cubic equations for r,, and rj’.

m The equation for r,, can be solved analytically whilst solving for r/
numerically.

m Model 1 and Model 2 have a different dependence on v. In order to make
Model 1 and Model 2 closer we shall let v — M.
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