xFitter Updates: Probing Z Boson Couplings with Forward-Backward Asymmetry

Sasha Zenaiev¹ for xFitter developers team

¹ Hamburg University

A. Anataichuk et al. "Exploring SMEFT Couplings Using the Forward-Backward Asymmetry in Neutral Current Drell-Yan Production at the LHC" arXiv:2310.19638

> DIS2024 (Grenoble, France) 9 Apr 2024

- Drell Yan (DY) lepton pair production at the LHC is a useful process to test SM and probe proton PDFs
- Forward-Backward Asymmetry (AFB) is a clean observable for which many experimental and theoretical uncertainties cancel:

 $A_{\rm FB}^* = \frac{d\sigma/dM(\ell^+\ell^-)[\cos\theta^* > 0] - d\sigma/dM(\ell^+\ell^-)[\cos\theta^* < 0]}{d\sigma/dM(\ell^+\ell^-)[\cos\theta^* > 0] + d\sigma/dM(\ell^+\ell^-)[\cos\theta^* < 0]}$

AFB was used to constrain PDFs (e.g. JHEP 10 (2019) 176)

$$AFB \propto rac{2}{3}u_v + rac{1}{3}d_v$$

We want to explore AFB potential to constrain Z boson couplings at future HL-LHC

DY AFB: PDF constraints at LHC and HL-LHC [JHEP 10 (2019) 176]

DY AFB in SM and SMEFT

- Traditionally AFB is used to measure the weak mixing angle (e.g. ATLAS-CONF-2018-037)
- DY cross sections (and hence AFB) depend on the Z boson coupling to fermions:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M\mathrm{d}y\mathrm{d}\mathrm{cos}\theta^*} = F(g_V^{Zu}, g_A^{Zu}, g_V^{Zd}, g_A^{Zd}, g_V^{Ze}, g_A^{Ze})$$

In the SM:

$$\begin{split} g_V^{Zu} &= -\frac{1}{2} - \frac{4}{3} \sin^2 \theta_W, \quad g_A^{Zu} &= -\frac{1}{2} \\ g_V^{Zd} &= -\frac{1}{2} + \frac{2}{3} \sin^2 \theta_W, \quad g_A^{Zu} &= -\frac{1}{2} \end{split}$$

In the SMEFT up to dimension D = 6:

$$\mathcal{L} = \mathcal{L}^{(SM)} + \frac{1}{\Lambda^2} \sum_{j=1}^{N_6} C_j^{(6)} \mathcal{O}_j^{(6)}$$

- In the dilepton mass region not too far from the Z-boson peak the whole effect of the D = 6 SMEFT Lagrangian is a modification of the vector boson couplings to fermions
- Couplings to leptons g_V^{Ze} , g_A^{Ze} are well constrained by LEP data
- 4-fermion operators are not included: < 1% at M(II) < 150 GeV</p>
- We fit four parameters δ (assuming g^{Zu}_{A,V} = g^{Zc}_{A,V}, g^{Zd}_{A,V} = g^{Zs}_{A,V} = g^{Zb}_{A,V}) which are = 0 in the SM (R, L couplings are linear combination of V, A couplings):

$$\begin{split} g_L^{Zu} &\equiv g_{L(\mathrm{SMEFT})}^{Zu} = g_{L(\mathrm{SM})}^{Zu} + \delta g_L^{Zu} \;, \quad g_R^{Zu} \equiv g_{R(\mathrm{SMEFT})}^{Zu} = g_{R(\mathrm{SM})}^{Zu} + \delta g_R^{Zu} \\ g_L^{Zd} &\equiv g_{L(\mathrm{SMEFT})}^{Zd} = g_{L(\mathrm{SM})}^{Zd} + \delta g_L^{Zd} \;, \quad g_R^{Zd} \equiv g_{R(\mathrm{SMEFT})}^{Zd} = g_{R(\mathrm{SM})}^{Zd} + \delta g_R^{Zd} \end{split}$$

DY AFB as function of M(II) and y(II) [LO]

In order to maximize the sensistivity, we use double-differential AFB as function of M(II) and y(II)

DY AFB derivatives w.r.t the couplings as a function of M(II) [LO]

Sensitivity to the couplings comes from AFB as a function of M(II)

DY AFB derivatives w.r.t the couplings divided by stat. unc. (HL-LHC)

- Statistical uncertainties increase outside of the Z peak
- \rightarrow does not make sense to go to very low or high M(II)

S. Zenaiev for xFitter developers team

xFitter: Probing Z Boson Couplings with AFB

DY AFB derivatives w.r.t the couplings as a function of y(l) [LO]

AFB → 0 as y(l) → 0 due to its definition at the LHC (w.r.t the longitudinal boost of l)
Best sensitivity comes from largest reachable y(l) values

S. Zenaiev for xFitter developers team

xFitter: Probing Z Boson Couplings with AFB

Binning scheme and analysis setup

- We chose 5 GeV of M(II) and 0.6 bins of y(II) (experimentally feasible)
- Interpretent Section With the section of the se
- Assume HL-LHC luminosity of 3000 fb⁻¹ and 20% detector correction factor
- PDF uncertainties are included using the profiling technique (constrained by (pseudo-)data)
- The fits are done at LO (sensitivity study only) using xFitter framework

xFitter [https://xfitter.org] [https://gitlab.com/fitters/xfitter]

xFitter

ଦ 🕑 😂 🖬 📾 🗟 🍜

Welcome to xFitter (former HERAFitter)

Proton parton distribution functions (PDFs) are essential for precision physics at the LHC and other hadron colliders. The determination of the PDFs is a complex endeavor involving several physics process. The main process is the lepton proton deep-inelastic scattering (DIS), with data collected by the HERA ep collider covering a large kinematic phase space needed to extract PDFs. Further processes (two target DIS, poblar collisions etc.) provide additional constraining powers for flavour separation. In particular, the register massive mediate more the knowledge of the PDF.

The xFilter project is an open source QCD fit framework ready to extract PDFs and assess the impact of new data. The framework includes modules allowing for a various theoretical and methodological options, capable to fit a large number of relevant data sets from HERA. Tevatron and LHC. This framework is already used in many analyses at the LHC.

Downloads of xFitter software package

All the xFitter releases can be accessed HERE including *** 2.2.0 FutureFreeze** release All the former (HERAFitter) releases can be accessed **•** HERE. Description: **•** http://arxiv.org/abs/1410.4412

xFitter Meetings

- xFitter Workshop at CERN 2-5 May 2023
- · User's Meetings: meetings to enhance communication between users and developers (open access)
- Developer's Meeting: technical weekly meetings to ensure communication among developers (restricted access)
- Steering Group's Meeting (restricted access)

xFitter representation

- ¥ BSnowmass contrubution
- · List of results
- List of collected talks

Developers Info (restricted to developers)

Internal Developments

Organisation

- · Release coordinator/Librarian (revision of the release candidates): Sasha Glazov, Oleksandr Zenaiev
- · DESY IT Contact: Yves Kemp

Getting help

🔻 See our help forum 🗢 https://groups.google.com/forum/#!forum/xfitter-users

In case of questions or problems, please post a message there (requires a google account) or send it via email xitter-users@googlegroups.com (no account required)

xFitter [xfitter.org] [gitlab.com/fitters/xfitter]

• xFitter (HERAfitter before 2015) is a unique open-source QCD fit framework:

- extract PDFs and theory parameters
- assess impact of new data
- check consistency of experimental data
- test different theoretical assumptions
- ... any exercise which involves data vs. theory
- It is widely used by LHC experiments and theorists (> 100 publications)

Why is xFitter UNIQUE and so VERSATILE/FLEXIBLE/ADAPTABLE? Because it is fully modular. E.g., hadron interactions are realized as

- > PDF parametrisation at starting scale: it is enough to type your favourite formulas
- PDF decomposition: construct valence, sea and gluon, apply sum rules (automatic numerical integration is available)
- PDF evolution: interfaced various codes (QCDNUM, OPENQCDRAD, APFEL, LHAPDF); one can easily interface a new code
- hard scattering ("reaction"): again, supports various options:
 - * various HQ schemes for ep DIS
 - * some "simple" calculations, e.g. LO DY
 - interfaced external packages, e.g. HATHOR (NNLO total heavy-quark and single t hadroproduction) and HVQMNR (NLO heavy-quark differential hadroproduction)
 - but main emphasis is put on interfaces to fast intepolation tables, such as fastNLO, ApplGrid, PineAppl: allows us to get recent higher-order calculations (e.g. MCFM, MATRIX etc.) "for free"
- ... and one can change/mix all these ingredients freely!

Selected studies by the xFitter team

- "A determination of $m_c(m_c)$ from HERA data using a matched heavy flavor scheme" [JHEP 1608 (2016) 050]
- "Probing the strange content of the proton with charm production in charged current at LHeC" [Eur. Phys. J. C 79, 864 (2019)]
- "PDF Profiling Using the Forward-Backward Asymmetry in Neutral Current Drell-Yan Production" [JHEP 2019, 176 (2019)]
- "Parton Distribution Functions of the Charged Pion Within The xFitter Framework" [Phys.Rev.D 102 (2020) 1, 014040]

Results: fitted couplings using different PDF sets

Results: comparison with existing extractions

 HL-LHC has significant potential for improving current constraints compared to the current LHC data [ATLAS(10)]

Results: comparison with other future experiments

Summary

- AFB as a function of *M*(*II*) and *y*(*II*) is a suitable observable which provides constraints on the PDFs and *Z* boson couplings
- At HL-LHC it is possible to extract these couplings with 1% level precision, which approaches the precision of LHeC and FCC-eh
- We have studied the dependence on the bin widths and provide a specific 2D binning scheme to maximize the sensitivity to the couplings
- Currently, the largest uncertainty comes from the PDFs, which will be improved in the future
- xFitter [https://gitlab.com/fitters/xfitter] is a modern versatile and fully flexible tool which can be used for any (pseudo-)data vs theory analysis as complex as a global PDF fit
 - for example, see this talk tomorrow A. Courtoy "Fantomas4QCD: pion PDFs with epistemic uncertainties", Apr 10, 2024, 14:50 (WG1)

BACKUP

FIG. 3. The linear and quadratic SMEFT contributions to A_{FB}^* for the Wilson coefficients C_{eu} (left) and $C_{lq}^{(1)}$ (right), respectively. The orange and purple lines represent the linear (a/Λ^2) and quadratic (B/Λ^4) SMEFT contributions with C = 1 and $\Lambda = 4$ TeV, while the green line shows the SM contribution. The binning, fiducial cuts and the definition of AFB are those of dataset III in Table III

R. Boughezal, Y. Huang and F. Petriello, "Impact of high invariant-mass Drell-Yan forward-backward asymmetry measurements on SMEFT fits", Phys. Rev. D 108 (2023) 076008 [arXiv:2303.08257].