

Parton Density.jl

A Novel Bayesian PDF Fitting Code

F. Capel, A. Caldwell, O. Schulz, A. Verbytskyi (Max Planck Institute for Physics) **M. Botje** (Nikhef)

R. Aggarwal (USAR, Guru Gobind Singh Indraprastha University)

Presented by Allen Caldwell

Max Planck Institute for Physics

A. Caldwell

- fully Bayesian approach, with all its advantages, including samples from the full posterior density distribution
- based on BAT.jl, a modern Bayesian Analysis Toolkit written in the Julia language
- general likelihood, not limited to χ^2 minimization, allowing for forward modeling approach to analysis
- standard output in useful format

used in

A. Caldwell

Main Features

PartonDensity.jl: a novel parton density determination code

Francesca Capel, Ritu Aggarwal, Michiel Botje, Allen Caldwell, Oliver Schulz et al. (Jan 31, 2024) e-Print: 2401.17729 [hep-ph]

Constraints on the Up-Quark Valence Distribution in the Proton Ritu Aggarwal Pune U. Michiel Botje Nikhef, Amsterdam Allen Caldwell Munich, Max Planck Inst. Francesca Capel Munich, Max Planck Inst. Oliver Schulz Munich, Max Planck Inst. *Phys.Rev.Lett.* 130 (2023) 14, 141901 • e-Print: 2209.06571 [hep-ph]

Reminder: Bayesian Formulation

Simple expressions, but θ can be quite high dimensional making the solution difficult.

PartonDensity.jl solves Bayesian challenge using BAT.jl

For those interested in how numerical challenges are met - visit: <u>https://github.com/bat/BAT.jl</u>

A. Caldwell

Forward Modeling

- 1. Define pdfs
- 2. Perform evolution: done with QCDNUM
- 3. Calculate differential cross section
 - for unfolded data, use this for performing analysis
- 4. Integrate over bins in which events counted for forward modeling. Use a fine (detector specified) binning
- 5. Apply detector specific response function to get event expectations in measurement bins
- 6. Calculate probability of observed event numbers given expectation

A. Caldwell

QCDNUM & SPLINT

SPLINT package constructs splines on selected set of QCDNUM (x, Q^2) evolution grid-points. Fast and accurate.

Compared to 2D Gauss integration routine for differently shaped bins. Relative difference $< 10^{-9}$ with SPLINT running about a factor of~300 faster than Gauss integration

Subtask

Evolution

Structure function splines (6)

Cross section spline

Integration over 429 bins

2018 MacBook Pro with an

Intel processor

	\mathbf{Grid}	CPU time [ms]
	100×50	3.6
×)	22×7	2.9
	100×25	2.2
		0.8

Use combinations of Beta functions, $xf(x) = A x^{\lambda}(1 - x)^{K}$ to model PDFs

Parameters are λ , *K* and the integrated momenta, $\Delta = dxxf(x)$

For our example, we use parameters similar to those found for the ZEUS high-x data to generate simulated data.

Data alimated with lumain astrona in 7010

experiment as well as 100x ZEUS luminosity.							V.			Prior	Rang	
							J -		Δ	7	Dir(20, 10, 20, 20, 5, 2.5, 1.5, 1.5, 0.5)	[0,1]
									K	u	Normal(3.5, 0.5)	[1, 6.5]
TAF	BLE II.	Paramet	ter value	es used	in tł	ne data s	simulat	ion.	K	d	Normal(3.5, 0.5)	[1, 6.5]
			A	$\times 10^{3}$					λ_{i}^{2}	g^{v}	Uniform	[0,1]
V	ıV	V	<u> </u>	x 10	0.7	0-	0-	01	λ_{i}^{s}	g	Uniform	[-1, -
u	d	<i>g</i> '	g^{\sim}	2u	2d	2s	2c	26	K	g	Normal(4, 1.5)	[1, 8.5]
228	104	249	249	104	52	10	5	0.5	λ_{i}	\bar{q}	Uniform	[-1, -
K_u	K_d	λ_a^{v}	$\lambda_a^{ m s}$	K	\overline{g}	$\lambda_{ar{q}}$	$K_{ar{q}}$	$\boldsymbol{\beta}$	K	\bar{q}	Normal(4, 1.5)	[1, 9.5]
3.70	3.70	0.50	-0.5	0 5.	.0	-0.50	6.0	0	ß	3	Normal(0, 1)	[-5, 5]

Parameters used to model systematic uncertainties in modeling of detector response

A. Caldwell

Example

TABLE III Priors used in the analysis of the pseudo-data sets. There are 9 parameters in the vector Δ and 10 in β . The normal distributions are truncated to the range indicated, and their mean and standard deviation are given in brackets.

Example Output

Sampling result

- Total number of samples: 180725
- Total weight of samples: 999996
- Effective sample size: between 1915 and 4848

Marginals

Parameter	Mean	Std. dev.	Gobal mode	Marg. mode	Cred
Δ1	0.221272	0.0104517	0.214535	0.22175	0.2125
Δ2	0.135998	0.0296684	0.130628	0.1335	0.104
Δз	0.235809	0.0402725	0.212643	0.237	0.1929
Δ4	0.236329	0.0395947	0.280566	0.235	0.1944
Δ5	0.0858189	0.0219218	0.110866	0.0895	0.0652
Δ ₆	0.0325197	0.0197449	0.014177	0.0225	0.00771
Δ7	0.0196916	0.0159925	0.00706804	0.0065	0.00141
Δ8	0.0259069	0.0180721	0.0295166	0.0115	0.00215
Δ9	0.00665518	0.00952574	3.88412e-13	0.0005	3.88412e
Ku	3.80003	0.199465	3.54776	3.775	3.599
Kd	3.50409	0.483632	3.77008	3.47	2.993
Kq	6.5525	1.27579	4.48005	6.375	5.18
λgı	0.489073	0.28815	0.545423	0.0975	m
λg₂	-0.506723	0.250449	-0.785071	-0.1975	-0.6468
λq	-0.491805	0.100082	-0.561121	-0.5075	-0.5979
Kg	4.84575	1.16458	4.83376	5.075	3.765
δ1	0.501562	0.757327	-0.364463	0.525	-0.29
δ²	-0.236894	0.736022	-0.696325	-0.275	-1.013
δ ^Θ 1	0.0157033	1.00605	1.00191	-0.075	-0.939
δ ⁰ 2	0.00642715	0.995055	0.756425	0.125	-0.949
δ ^Θ 3	0.00928641	1.0063	0.989709	-0.075	-0.950
δ ^Θ 4	-3.89931e-5	1.00616	0.271427	0.025	-1.062
δ ^Θ 5	0.0206288	0.995915	2.67083	0.075	-1.024
δ ⁰ 6	0.0017444	0.997834	0.178345	-0.175	-0.943
δ ⁰ 7	-0.00418741	1.00237	0.35021	0.025	-1.051
δ ^e s	0.00901734	0.993205	0.333895	-0.075	-1.036

A. Caldwell

Example Output

Counts K_u 6 $p \frac{1}{2}$ 28 , 6 , M_{q} 28 6 K_g 20.6 $\triangleleft_{\varrho 0.2}$ 0.40.3 $\triangleleft^{\mathrm{res}}$ 0.2 0.1 $3 \quad 3.5 \quad 4$ K_{u}

Parameter Distributions

Full set of 1D and 2D distributions trivially available

Functions to return correlation matrix, credible intervals, etc

A. Caldwell

DIS 2024 Grenoble

8

Example Output

Posterior predictive check: Use samples of the parameters from the posterior probability distribution to generate data and compare to fitted data.

This is a Bayesian goodness-of-fit test

 ${\mathcal X}$

Analysis based on Samples

E.g., total Sea momentum Δ_{sea} and gluon momentum Δ_{g} calculated and correct probability distribution extracted

A. Caldwell

Any function of the parameters can be calculated and the probability distribution for the function plotted.

Scaling of uncertainties with data set size was verified

Testing

Effect of misspecified priors also studied in detail

ZEUS high-x Analysis

A. Caldwell

	each parameter is given the value of the posterior and of its marginal distribution sponding to the 68% smallest credible not constrain the values of $\Delta_{\bar{s},\bar{c},\bar{b}}$, $\lambda_g^{\rm v}$ and					
0.9 1.0		Global mode	Marginal mode			
et al. 2016	Δ_u	0.225	$0.219\substack{+0.009\\-0.009}$	K_{u}		
$\frac{1}{2} \frac{V(n O^2)}{2}$	Δ_d	0.084	$0.092\substack{+0.023\\-0.026}$	K_d		
$\frac{\operatorname{m}[xu^{-}(x,Q_{0}^{-})]}{\operatorname{d}\ln(1-x)}$	$\lambda_{ar{q}}$	-0.50	$-0.54\substack{+0.09\\-0.09}$	$K_{ar{q}}$		
$O \prod(1-x)$	K_{g}	4.69	$5.02^{+1.21}_{-1.21}$			
	$2\Delta_{ar{u}}$	0.092	$0.100\substack{+0.026\\-0.024}$	$2\Delta_{ar{d}}$		
	Δ_g^{v}	0.250	$0.245\substack{+0.040\\-0.044}$	Δ_g^{s}		
1.0						

from this analysis. For the mode of the joint ion, with errors correinterval. The fit does and $\lambda_g^{\rm s}$ (see text).

Constraints on the Up-Quark Valence Distribution in the Proton

<u>Allen Caldwell Munich, Max Planck</u> Inst. Francesca Capel Munich, Max Planck Inst. Oliver Schulz Munich, Max Planck Inst. *Phys.Rev.Lett.* 130 (2023) 14, 141901 • e-Print: 2209.06571 [hep-ph]

Global

 \mathbf{mode}

3.89

3.18

7.42

0.032

0.275

- We have developed a novel PDF analysis code allowing for a full Bayesian posterior probability determination
- Code supports a forward modeling approach.
- Use of Julia allows I/O, plotting, analysis, ..., in one high-level language

• So far, used exclusively for the analysis of high-x and high- $Q^2 e^{\pm}p$ NC scattering data. Look forward to extending the analysis to other data sets, including those reported as differential cross sections at the QED Born level.

Planned upgrades:

- sampling efficiency and by speeding up the QCD evolution of the pdfs.
- Extend the framework to investigate more flexible pdf parameterizations using Bayesian model selection techniques.
- Help is welcome to make PartonDensity.jl more generally useable!

A. Caldwell

Summary

• The open-source code has been thoroughly tested and is now available for distribution. https://github.com/cescalara/PartonDensity.jl

• Make the analysis code run much faster (e.g., by parallelizing computations through threading or forking, by improving the MCMC

