

Markov chain Monte Carlo determination of Proton PDF uncertainties at NNLO

DIS 2024 - Grenoble

Peter Risse (risse.p@uni-muenster.de)

living.knowledge

Contents

Markov chain Monte Carlo

sampling representation of the likelihood

autocorrelation: a bridge to lattice QCD

Proton PDF extraction

Setup

fixing a flaw in the parametrization

Definition of Uncertainties

From samples to PDF-Uncertainties

Comparison with Hessian

Contents

Markov chain Monte Carlo

sampling representation of the likelihood

autocorrelation: a bridge to lattice QCD

Proton PDF extraction

Setup

fixing a flaw in the parametrization

Definition of Uncertainties

From samples to PDF-Uncertainties

Comparison with Hessian

Markov chain Monte Carlo representation of the likelihood

draw random samples from the posterior function

$$post(\mathbf{c}|D) = \frac{1}{\mathcal{Z}} \exp\left(-\frac{1}{2}\chi^2(\mathbf{c}, D)\right)$$
$$\rightarrow \{\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_n}\}$$

Markov chain Monte Carlo representation of the likelihood

draw random samples from the posterior function

$$post(\mathbf{c}|D) = \frac{1}{\mathcal{Z}} \exp\left(-\frac{1}{2}\chi^2(\mathbf{c}, D)\right)$$
$$\rightarrow \{\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_n}\}$$

samples have to reproduce the expectation value and higher modes

$$E\{\mathcal{O}(\mathbf{c})\} = rac{1}{n}\sum_{i=1}^{n}\mathcal{O}(\mathbf{c}_{i})$$

Autocorrelation

- we cannot use the simple equations to estimate variances and higher modes
 - these severely underestimate the true PDF-Uncertainties

autocorrelation at full force

Autocorrelation

- we cannot use the simple equations to estimate variances and higher modes
 - these severely underestimate the true PDF-Uncertainties
- since every new sample depends on the current the gain in information is reduced

autocorrelation at full force

Autocorrelation

- we cannot use the simple equations to estimate variances and higher modes
 - these severely underestimate the true PDF-Uncertainties
- since every new sample depends on the current the gain in information is reduced
- this is what is called autocorrelation
 - twice the autocorrelation-time τ estimates the number of links in the chain until the next independent sample is drawn

autocorrelation at full force

Bridge to Lattice QCD

▶ lattice QCD has several methods dealing with this problem

Bridge to Lattice QCD

lattice QCD has several methods dealing with this problem

- one example is the Γ -method
 - this method estimates the autocorrelation time directly from the chain
 - used to enlarge error estimates as to eliminate bias
 - or filter the time series to get uncorrelated samples

Monte Carlo errors with less errors.

Ulli Wolff* Institut für Physik, Humboldt Universität Newtonstr. 15 12489 Berlin, Germany

> ALPHA Collaboration

Abstract

We explain in detail how to estimate mean values and assess statistical errors for arbitrary functions of elementary observables in Monte Carlo simulations. The method is to estimate and sum the relevant autocorrelation functions, which is argued to produce more certain error estimates than binning techniques and hence to help toward a hotter amplitude of enzyment estimations. As afforting integrated

arXiv:hep-lat/0306017

Filtering based on the Γ -method

using 300 samples directly

Filtering based on the Γ -method

using 300 samples directly

thinning 10^4 samples to a total of 300

Contents

Markov chain Monte Carlo

sampling representation of the likelihood

autocorrelation: a bridge to lattice QCD

Proton PDF extraction

Setup

fixing a flaw in the parametrization

Definition of Uncertainties

From samples to PDF-Uncertainties

Comparison with Hessian

Experimental data

Fitting setup

Down-valence Distribution

$$xd_{v}(x,Q_{0}) = c_{0}x^{\mathbf{c}_{1}}(1-x)^{\mathbf{c}_{2}}\left(1+c_{3}\sqrt{x}+\mathbf{c}_{4}x\right)$$

Down-valence Distribution

$$xd_v(x,Q_0) = c_0 x^{\mathbf{c}_1} (1-x)^{\mathbf{c}_2} \left(1 + c_3 \sqrt{x} + \mathbf{c}_4 x\right)$$

becomes independent of c_4

$$\lim_{\mathbf{c}_4 \to \infty} x d_v(x, Q_0) = \lim_{\mathbf{c}_4 \to \infty} c_0 x^{\mathbf{c}_1} (1-x)^{\mathbf{c}_2} [\mathbf{c}_4 x]$$
$$= \tilde{\mathbf{c}}_0 x^{\mathbf{c}_1 + 1} (1-x)^{\mathbf{c}_2}$$

Down-valence Distribution 1D parameter scan $xd_v(x,Q_0) = c_0 x^{\mathbf{c_1}} (1-x)^{\mathbf{c_2}} \left(1 + c_3 \sqrt{x} + \mathbf{c_4} x\right)$ 300 TOTAL DIS total 250 DY total becomes independent of c_4 200 ² 150 $\lim_{\mathbf{c}_4 \to \infty} x d_v(x, Q_0) = \lim_{\mathbf{c}_4 \to \infty} c_0 x^{\mathbf{c}_1} (1-x)^{\mathbf{c}_2} \left[\mathbf{c}_4 x \right]$ 100 $= \tilde{c}_0 x^{c_1+1} (1-x)^{c_2}$ 50 0 200 400 600 800 1000 1200 Ô. dv p4

Down-valence Distribution 1D parameter scan $xd_{v}(x,Q_{0}) = c_{0}x^{c_{1}}(1-x)^{c_{2}}(1+c_{3}\sqrt{x}+c_{4}x)$ 300 TOTAL DIS total 250 DY total becomes independent of c_4 200 ² 150 $\lim_{\mathbf{c_4} \to \infty} x d_v(x, Q_0) = \lim_{\mathbf{c_4} \to \infty} c_0 x^{\mathbf{c_1}} (1-x)^{\mathbf{c_2}} \left[\mathbf{c_4} x \right]$ 100 $= \tilde{c}_0 x^{c_1+1} (1-x)^{c_2}$ 50 200 400 600 800 Ô. 1000 1200 need constrain c₄ by Uniform Prior: dv p4

 $-1000 \le {\rm C_4} \le 10.000$

Fitting setup

PDF parameters

$$f_i(x,Q_0) = \mathbf{c_0} x^{\mathbf{c_1}} (1-x)^{\mathbf{c_2}} (1+\mathbf{c_3}\sqrt{x} + \mathbf{c_4} x)^{\mathbf{c_4}} (1-x)^{\mathbf{c_4}} (1-x)^{\mathbf{c_4}$$

Hyperparameters

- Proposals: Adaptive Metropolis Hastings
- 36 independent chains with 479.000 samples each

Thermalization

Thermalization

Fitting setup

PDF parameters

$$\begin{split} f_i(x,Q_0) &= \mathbf{c_0} x^{\mathbf{c_1}} (1-x)^{\mathbf{c_2}} (1+\mathbf{c_3}\sqrt{x}+\mathbf{c_4}x) \\ \mathbf{u_v} &\to c_1 \quad c_2 \quad c_4 \\ \mathbf{d_v} &\to c_1 \quad c_2 \quad c_4 \quad (\text{Prior}) \\ \mathbf{\overline{u}} + \mathbf{\overline{d}} \quad \to \quad c_1 \quad c_2 \quad c_4 \\ \mathbf{s} + \mathbf{\overline{s}} \quad \to \quad c_0 \end{split}$$

 $\mathbf{g} \rightarrow c_0 \ c_1 \ c_2 \ c_3 \ c_4$

Total: 15 parameters

Hyperparameters

- Proposals: Adaptive Metropolis Hastings
- 36 independent chains with 479.000 samples each
 - burn-in phase: 140.000 samples
 - **Total:** 17 million samples
- removing autocorrelation and burn-in:

Total: 4068 uncorrelated samples

Fitting setup

 $\mathbf{u}_{\mathbf{v}}$

PDF parameters

$$f_i(x,Q_0) = \mathbf{c_0} x^{\mathbf{c_1}} (1-x)^{\mathbf{c_2}} (1+\mathbf{c_3}\sqrt{x} + \mathbf{c_4} x)^{\mathbf{c_4}} (1-x)^{\mathbf{c_4}} (1-x)^{\mathbf{c_4}$$

 c_2 c_4

 \rightarrow c_1

Hyperparameters

- Proposals: Adaptive Metropolis Hastings
- 36 independent chains with 479.000 samples each
 - burn-in phase: 140.000 samples
 - **Total:** 17 million samples
- removing autocorrelation and burn-in:

Total: 4068 uncorrelated samples

$$\chi^2/{
m d.o.f.}\,{=}\,2380.25/1969\,{=}\,1.20$$

 C_{4}

Contents

Markov chain Monte Carlo

sampling representation of the likelihood

autocorrelation: a bridge to lattice QCD

Proton PDF extraction

Setup

fixing a flaw in the parametrization

Definition of Uncertainties

► From samples to PDF-Uncertainties

Comparison with Hessian

From Samples to PDF-Uncertainties

Confidence interval for observable $\mathcal{O}(c)$

$$\mathcal{O}_{-} \leq \mathcal{O} \leq \mathcal{O}_{+}$$

From Samples to PDF-Uncertainties

From Samples to PDF-Uncertainties

Confidence interval for observable $\mathcal{O}(c)$ $\mathcal{O}_{-} < \mathcal{O} < \mathcal{O}_{+}$ Cumulative χ^2 -Method Central: sample with minimal $\chi^2 \to \mathcal{O}_{\chi^2_{min}}$ Lower bound: $\min(\{\mathcal{O}\}_{90\%})$ Upper bound: $\max(\{\mathcal{O}\}_{90\%})$ A. Putze et al., arXiv: 0808.2437

Comparison with Hessian – Gaussian parameters

Comparison with Hessian – non-Gaussian parameters

Conclusion

Markov chain Monte Carlo

► access uncertainties without approximations ► Γ-method to deal with autocorrelation

Proton PDF extraction

▶ 15 parameter fit to DIS & DY data

 $\lambda \chi^2$ /d.o.f. = 2380.25/1969 = 1.20

- ► Full MCMC chain: 17 million samples
- Result: 4068 uncorrelated samples

Definition of Uncertainties

- ► Confidence limits using χ^2 -values
- **•** Estimation of Tolerance from χ^2 -samples
- good agreement for Gaussian parameters
- differences for non-Gaussian parameters

backup

Markov chain Monte Carlo representation of the likelihood

- posterior distribution too complicated to sample directly
 - need clever way to choose Monte Carlo samples
- construct the Monte Carlo samples via a Markov chain

$$\{\mathbf{c}_1 \rightarrow \mathbf{c}_2 \rightarrow \cdots \rightarrow \mathbf{c}_{n-1} \rightarrow \mathbf{c}_n\}$$

with $p_i(\mathbf{c}) = \int \mathrm{d}\mathbf{c}' \, p_{i-1}(\mathbf{c}') T(\mathbf{c}', \mathbf{c})$

• with the transition kernel $T(\mathbf{c}, \mathbf{c}')$

$$\overbrace{proper MCMC algorithm: T(\mathbf{c}, \mathbf{c}')}^{t \to \infty} \operatorname{post}(\mathbf{c}|D)$$

Markov chain Monte Carlo representation of the likelihood

Choosing the proposal distribution – Adaptive Metropolis-Hastings

1. Use normal random walk Metropolis-Hastings until N_0 samples have been obtained

proposal distribution: multivariate Gaussian

 $\tilde{\mathbf{c}}_{i+1}$ proposed from $q(\tilde{\mathbf{c}}_{i+1}, \mathbf{c}_i) = \mathcal{N}(\mathbf{c}_i, C_0)$ with C_0 : covariance matrix from user input

2. switch to a self learning proposal distribution

 $\tilde{\mathbf{c}}_{i+1}$ proposed from $q(\tilde{\mathbf{c}}_{i+1}, \mathbf{c}_i) = (1 - \beta)\mathcal{N}(\mathbf{c}_i, \text{scale} \cdot \overline{C}_i) + \beta \mathcal{N}(\mathbf{c}_i, C_0)$ with self learned $\overline{\mathbf{C}}_i$

- $0 < \beta < 1$ controls the impact of the 'learned' proposal
- 3. reset self learned proposal distribution to boost convergence
 - this reduces the impact of the starting point

H. Haario et al.: "An adaptive Metropolis algorithm", Bernoulli 7.2 (Apr. 2001)

Bertone, arXiv:1708.00911

- ▶ main author: V. Bertone
- rewrite of the Fortran APFEL code
 used by the NNPDF collaboration

Bertone, arXiv:1708.00911

- main author: V. Bertone
- rewrite of the Fortran APFEL code
 used by the NNPDF collaboration

Precompute observables

$$F_{\lambda}(x,Q^2) = \sum_{k} \int_{\chi}^{1} \frac{\mathrm{d}\xi}{\xi} C_k^{\lambda} \left(\frac{\chi}{\xi}, \frac{Q}{\mu}, \frac{M_i}{\mu}, \alpha_s(\mu)\right) f_k(\xi, \mu)$$

Bertone, arXiv:1708.00911

- ▶ main author: V. Bertone
- rewrite of the Fortran APFEL code
 used by the NNPDF collaboration

Precompute observables

$$\begin{split} F_{\lambda}(x,Q^2) &= \sum_{k} \int_{\chi}^{1} \frac{\mathrm{d}\xi}{\xi} C_{k}^{\lambda} \left(\frac{\chi}{\xi},\frac{Q}{\mu},\frac{M_{i}}{\mu},\alpha_{s}(\mu)\right) f_{k}(\xi,\mu) \\ \text{Replace with interpolating functions:} & \\ & \sum_{k}^{N_{\xi}} w_{\alpha}(\xi) f_{k}(\xi_{\alpha},\mu) \end{split}$$

APFEL

 α

Bertone, arXiv:1708.00911

main author: V. Bertone

rewrite of the Fortran APFEL code
 used by the NNPDF collaboration

Precompute observables

$$F_{\lambda}(x,Q^{2}) = \sum_{k} \sum_{\alpha} \underbrace{\int_{\chi}^{1} \frac{\mathrm{d}\xi}{\xi} C_{k}^{\lambda} \left(\frac{\chi}{\xi}, \frac{Q}{mu}, \frac{M_{i}}{\mu}, \alpha_{s}(\mu)\right) w_{\alpha}(\xi)}_{\mathbf{Precompute}} f_{k}(\xi_{\alpha}, \mu)$$

Speed-up of theoretical predictions – Hadron collider

$$\sigma_{pp \to X} = \sum_{s}^{partons} \sum_{p} \int \mathrm{d}x_1 \mathrm{d}x_2 \,\hat{\sigma}^{(s)(p)} \alpha_s^p(Q^2) F^{(s)}(x_1, x_2, Q^2) \text{ , } F^{(s)} = \sum_{ij} f_i(x_1, Q^2) f_j(x_2, Q^2)$$

- computationally expensive double integrals
 - increasing amount of experimental observables
 - solution APPLgrid
 - ▶ interpolate the PDFs
 - precompute the integrals by including the interpolating functions as grids
 - now convolute grids with any pdf to get prediction

T. Carli, D. Clements et al., arXiv:0911.2985

Speed-up of theoretical predictions – Hadron collider

- APPLgrid is still too slow for several reasons
 - convolution of the grid with the PDFs is not well optimized
 - \blacktriangleright before one can convolute one has to compute the DGLAP evolution to get the PDFs at every Q

- solution fast convolution tables (FK-tables) by APFELgrid
 - combines APPLgrid tables with DGLAP-evolution tables
 - only need the PDFs at Q_0
 - well optimized by making use of vectorisation and multiprocessing

b possible speed-up compared to APPLgrid: $O(2) - O(10^3)$

V. Bertone et al., arXiv:1605.02070

Description of Experimental Data

Data Set	Ref.	Data Points	$\chi^2/{ m DATA}$
DIS			
HERA σ_{red} neutral current	[54]	1039	1.26
HERA σ_{red} charged current	[54]	81	1.08
BCDMS F_2 proton	[135]	339	1.09
NCM F_2 proton	[136]	201	1.54
DIS total		1660	1.25
DY			
CDF Z-rapidity	[137]	28	1.10
DO Z-rapidity	[138]	28	0.60
ATLAS $Z p_T$ 8 TeV (M_{ll})	[139]	44	1.06
ATLAS $Z p_T$ 8 TeV (y_Z)	[139]	48	0.65
CMS $Z p_T 8$ TeV	[140]	28	0.46
CMS double diff. 2011 7 TeV	[141]	88	1.02
LHC b $W^{\pm}, Z \rightarrow \mu$ 7 TeV	[142]	29	1.07
LHC b $W^{\pm}, Z \rightarrow \mu$ 8 TeV	[143]	31	1.18
DY total		324	0.91
Total		1984	1.20 (per dof)

Pairwise correlations