Evolution of structure functions at NLO without PDFs

Speaker: Mirja Tevio In collaboration with: Tuomas Lappi Heikki Mäntysaari Hannu Paukkunen

University of Jyväskylä
Helsinki Institute of Physics
Center of Excellence in Quark Matter
DIS2024 @ Grenoble

Motivation

- Structure functions will be measured at Electron-lon Collider (EIC)

Motivation

- Structure functions will be measured at Electron-lon Collider (EIC)
- Problems with PDFs
- Parametrize non-observable quantities
- Factorization scheme dependence
- Need to define the relation between factorization scale and a physical scale

Motivation

- Structure functions will be measured at Electron-Ion Collider (EIC)
- Problems with PDFs
- Parametrize non-observable quantities
- Factorization scheme dependence
- Need to define the relation between factorization scale and a physical scale
- Physical basis \equiv set of linearly independent DIS observables

Motivation

- Structure functions will be measured at Electron-Ion Collider (EIC)
- Problems with PDFs
- Parametrize non-observable quantities
- Factorization scheme dependence
- Need to define the relation between factorization scale and a physical scale
- Physical basis \equiv set of linearly independent DIS observables
- DGLAP evolution of observables in a physical basis
- Avoiding the problems with PDFs
- More straightforward to compare to experimental data

Motivation

- Structure functions will be measured at Electron-lon Collider (EIC)
- Problems with PDFs
- Parametrize non-observable quantities
- Factorization scheme dependence
- Need to define the relation between factorization scale and a physical scale
- Physical basis \equiv set of linearly independent DIS observables
- DGLAP evolution of observables in a physical basis
- Avoiding the problems with PDFs
- More straightforward to compare to experimental data
- Previously discussed e.g. in Harland-Lang and Thorne 1811.08434, Hentschinski and Stratmann 1311.2825, W.L. van Neerven and A. Vogt hep-ph/9907472

Motivation

- Structure functions will be measured at Electron-lon Collider (EIC)
- Problems with PDFs
- Parametrize non-observable quantities
- Factorization scheme dependence
- Need to define the relation between factorization scale and a physical scale
- Physical basis \equiv set of linearly independent DIS observables
- DGLAP evolution of observables in a physical basis
- Avoiding the problems with PDFs
- More straightforward to compare to experimental data
- Previously discussed e.g. in Harland-Lang and Thorne 1811.08434, Hentschinski and Stratmann 1311.2825, W.L. van Neerven and A. Vogt hep-ph/9907472
- The novelty of our work:
- Momentum space
- Full three-flavor basis at NLO
- Continuation for LO physical basis 2304.06998

Straightforward example with only two observables

$$
F_{i}\left(x, Q^{2}\right)=\sum_{j} C_{F_{i} f_{j}}\left(Q^{2}, \mu^{2}\right) \otimes f_{j}\left(\mu^{2}\right)
$$

where $F_{i}=F_{2}, F_{\mathrm{L}} / \frac{\alpha_{\mathrm{s}}}{2 \pi}$, and $f_{j}=\Sigma, g$
Quark singlet:
$\Sigma\left(x, \mu^{2}\right)=\sum_{q}^{n_{f}}\left[q\left(x, \mu^{2}\right)+\bar{q}\left(x, \mu^{2}\right)\right], n_{f}=3$
Gluon PDF: $g\left(x, \mu^{2}\right)$

Straightforward example with only two observables

$$
F_{i}\left(x, Q^{2}\right)=\sum_{j} C_{F_{i} f_{j}}\left(Q^{2}, \mu^{2}\right) \otimes f_{j}\left(\mu^{2}\right)
$$

where $F_{i}=F_{2}, F_{\mathrm{L}} / \frac{\alpha_{\mathrm{s}}}{2 \pi}$, and $f_{j}=\Sigma, g$
Quark singlet:
$\Sigma\left(x, \mu^{2}\right)=\sum_{q}^{n_{f}}\left[q\left(x, \mu^{2}\right)+\bar{q}\left(x, \mu^{2}\right)\right], n_{\mathrm{f}}=3$ Gluon PDF: $g\left(x, \mu^{2}\right)$

First step: invert the linear mapping (difficult because $f \otimes g=\int_{x}^{1} \frac{\mathrm{~d} z}{z} f(z) g\left(\frac{x}{z}\right)$) $f_{j}\left(\mu^{2}\right)=\sum_{i} C_{F_{i} f_{j}}^{-1}\left(Q^{2}, \mu^{2}\right) \otimes F_{i}\left(Q^{2}\right)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$

Straightforward example with only two observables

$$
F_{i}\left(x, Q^{2}\right)=\sum_{j} C_{F_{i} f_{j}}\left(Q^{2}, \mu^{2}\right) \otimes f_{j}\left(\mu^{2}\right)
$$

where $F_{i}=F_{2}, F_{\mathrm{L}} / \frac{\alpha_{\mathrm{s}}}{2 \pi}$, and $f_{j}=\Sigma, g$
Quark singlet:
$\Sigma\left(x, \mu^{2}\right)=\sum_{q}^{n_{f}}\left[q\left(x, \mu^{2}\right)+\bar{q}\left(x, \mu^{2}\right)\right], n_{f}=3$ Gluon PDF: $g\left(x, \mu^{2}\right)$

First step: invert the linear mapping (difficult because $f \otimes g=\int_{x}^{1} \frac{\mathrm{~d} z}{z} f(z) g\left(\frac{x}{z}\right)$)
$f_{j}\left(\mu^{2}\right)=\sum_{i} C_{F_{i} f_{j}}^{-1}\left(Q^{2}, \mu^{2}\right) \otimes F_{i}\left(Q^{2}\right)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$

DGLAP evolution in physical basis

$$
\begin{aligned}
\frac{\mathrm{d} F_{i}\left(x, Q^{2}\right)}{\mathrm{d} \log \left(Q^{2}\right)} & =\sum_{j} \frac{\mathrm{~d} C_{F_{i} f_{j}}\left(Q^{2}, \mu^{2}\right)}{\mathrm{d} \log \left(Q^{2}\right)} \otimes f_{j}\left(\mu^{2}\right) \\
& =\sum_{j} \frac{\mathrm{~d} C_{F_{i} f_{j}}\left(Q^{2}, \mu^{2}\right)}{\mathrm{d} \log \left(Q^{2}\right)} \otimes \sum_{k} C_{F_{k} f_{j}}^{-1}\left(Q^{2}, \mu^{2}\right) \otimes F_{k}\left(Q^{2}\right)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)
\end{aligned}
$$

Scheme and scale dependence at NLO

DGLAP evolution in physical basis:

$$
\begin{aligned}
\frac{\mathrm{d} F_{i}\left(x, Q^{2}\right)}{\mathrm{d} \log \left(Q^{2}\right)} & =\sum_{j} \frac{\mathrm{~d} C_{F_{i} f_{j}}\left(Q^{2}, \mu^{2}\right)}{\mathrm{d} \log \left(Q^{2}\right)} \otimes \sum_{k} C_{F_{k} f_{j}}^{-1}\left(Q^{2}, \mu^{2}\right) \otimes F_{k}\left(Q^{2}\right)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right) \\
& =\sum_{k} \mathcal{P}_{i k} \otimes F_{k}\left(Q^{2}\right)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)
\end{aligned}
$$

Kernels $\mathcal{P}_{i k}$ are independent of the factorization scheme and scale

Scheme and scale dependence at NLO

DGLAP evolution in physical basis:

$$
\begin{aligned}
\frac{\mathrm{d} F_{i}\left(x, Q^{2}\right)}{\mathrm{d} \log \left(Q^{2}\right)} & =\sum_{j} \frac{\mathrm{~d} C_{F_{i} f_{j}}\left(Q^{2}, \mu^{2}\right)}{\mathrm{d} \log \left(Q^{2}\right)} \otimes \sum_{k} C_{F_{k} f_{j}}^{-1}\left(Q^{2}, \mu^{2}\right) \otimes F_{k}\left(Q^{2}\right)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right) \\
& =\sum_{k} \mathcal{P}_{i k} \otimes F_{k}\left(Q^{2}\right)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)
\end{aligned}
$$

Kernels $\mathcal{P}_{i k}$ are independent of the factorization scheme and scale
$\mathcal{P}_{i j}$'s determined by:

- Splitting functions
- Coefficient functions
\longrightarrow The scheme and scale dependence exactly cancels between these two

Inverting the gluon PDF at NLO

Simple case without quarks
Invert $g(x)$ from $\tilde{F}_{\mathrm{L}}=C_{F_{\mathrm{L}} g}^{(1)} \otimes g+\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} C_{F_{\mathrm{L}} g}^{(2)} \otimes g \quad \tilde{F}_{\mathrm{L}}\left(x, Q^{2}\right) \equiv \frac{2 \pi}{\alpha_{s}\left(Q^{2}\right)} \frac{F_{\mathrm{L}}\left(x, Q^{2}\right)}{x}$

Inverting the gluon PDF at NLO

Simple case without quarks
Invert $g(x)$ from $\tilde{F}_{\mathrm{L}}=C_{F_{\mathrm{L}} g}^{(1)} \otimes g+\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} C_{F_{\mathrm{L}} g}^{(2)} \otimes g \quad \tilde{F}_{\mathrm{L}}\left(x, Q^{2}\right) \equiv \frac{2 \pi}{\alpha_{s}\left(Q^{2}\right)} \frac{F_{\mathrm{L}}\left(x, Q^{2}\right)}{x}$

Define differential operator $\hat{P}(x) \equiv \frac{1}{8 T_{R} n_{f} \bar{e}_{q}^{2}}\left[x^{2} \frac{d^{2}}{d x^{2}}-2 x \frac{\mathrm{~d}}{\mathrm{dx}}+2\right]$
Notice $g(x)=\hat{P}(x)\left[C_{F_{\mathrm{L}} g}^{(1)} \otimes g\right]$

Inverting the gluon PDF at NLO

Simple case without quarks

Invert $g(x)$ from $\tilde{F}_{\mathrm{L}}=C_{F_{\mathrm{L}} g}^{(1)} \otimes g+\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} C_{F_{\mathrm{L}} g}^{(2)} \otimes g \quad \tilde{F}_{\mathrm{L}}\left(x, Q^{2}\right) \equiv \frac{2 \pi}{\alpha_{s}\left(Q^{2}\right)} \frac{F_{\mathrm{L}}\left(x, Q^{2}\right)}{x}$

Define differential operator $\hat{P}(x) \equiv \frac{1}{8 T_{\mathrm{R}} n_{\mathrm{f}}^{2} \bar{e}_{q}^{2}}\left[x^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d}}{\mathrm{dx}}+2\right]$
Notice $g(x)=\hat{P}(x)\left[C_{F_{\mathrm{L}} g}^{(1)} \otimes g\right]$
Get $C_{F_{\mathrm{L}} g}^{(1)} \otimes g$ from $\widetilde{F}_{\mathrm{L}}$:

$$
C_{F_{\mathrm{L}} g}^{(1)} \otimes g=\widetilde{F}_{\mathrm{L}}-\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} C_{F_{\mathrm{L}} g}^{(2)} \otimes g
$$

Inverting the gluon PDF at NLO

Simple case without quarks

Invert $g(x)$ from $\tilde{F}_{\mathrm{L}}=C_{F_{\mathrm{L}} g}^{(1)} \otimes g+\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} C_{F_{\mathrm{L}} g}^{(2)} \otimes g \quad \tilde{F}_{\mathrm{L}}\left(x, Q^{2}\right) \equiv \frac{2 \pi}{\alpha_{s}\left(Q^{2}\right)} \frac{F_{\mathrm{L}}\left(x, Q^{2}\right)}{x}$

Define differential operator $\hat{P}(x) \equiv \frac{1}{8 T_{R} n_{\mathrm{f}} \bar{e}_{q}^{2}}\left[x^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d}}{\mathrm{dx}}+2\right]$
Notice $g(x)=\hat{P}(x)\left[C_{F_{\mathrm{L}} g}^{(1)} \otimes g\right]$
Get $C_{F_{\mathrm{L}} g}^{(1)} \otimes g$ from $\widetilde{F}_{\mathrm{L}}$:
$C_{F_{\mathrm{L}} g}^{(1)} \otimes g=\widetilde{F}_{\mathrm{L}}-\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} C_{F_{\mathrm{L}} g}^{(2)} \otimes g$

$$
g(x)=\hat{P}(x)\left[\widetilde{F}_{\mathrm{L}}(x)-\frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{2 \pi} C_{F_{\mathrm{L}} g}^{(2)} \otimes g\right]
$$

Inverting the gluon PDF at NLO

Simple case without quarks

Invert $g(x)$ from $\widetilde{F}_{\mathrm{L}}=C_{F_{\mathrm{L}} g}^{(1)} \otimes g+\frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{2 \pi} C_{F_{\mathrm{L}} g}^{(2)} \otimes g \quad \widetilde{F}_{\mathrm{L}}\left(x, Q^{2}\right) \equiv \frac{2 \pi}{\alpha_{s}\left(Q^{2}\right)} \frac{F_{\mathrm{L}}\left(x, Q^{2}\right)}{x}$

Define differential operator $\hat{P}(x) \equiv \frac{1}{8 T_{R} n_{f} \bar{e}_{q}^{2}}\left[x^{2} \frac{\mathrm{~d}^{2}}{d x^{2}}-2 x \frac{\mathrm{~d}}{\mathrm{dx}}+2\right]$
Notice $g(x)=\hat{P}(x)\left[C_{F_{\mathrm{L}} g}^{(1)} \otimes g\right]$
Get $C_{F_{\mathrm{L}} g}^{(1)} \otimes g$ from $\widetilde{F}_{\mathrm{L}}$:
$C_{F_{\mathrm{L}} g}^{(1)} \otimes g=\widetilde{F}_{\mathrm{L}}-\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} C_{F_{\mathrm{L}} g}^{(2)} \otimes g$

$$
g(x)=\hat{P}(x)\left[\widetilde{F}_{\mathrm{L}}(x)-\frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{2 \pi} C_{F_{\mathrm{L}} g}^{(2)} \otimes g\right]
$$

Plug in $g(x)=\hat{P}(x) \widetilde{F}_{\mathrm{L}}(x)+\mathcal{O}\left(\alpha_{\mathrm{s}}\left(Q^{2}\right)\right)$ to the right hand side

$$
g(x)=\hat{P}(x) \widetilde{F}_{\mathrm{L}}(x)-\frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{2 \pi} \hat{P}(x)\left[C_{F_{\mathrm{L}} g}^{(2)} \otimes \hat{P} \widetilde{F}_{\mathrm{L}}\right]+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\left(Q^{2}\right)\right)
$$

Physical basis evolution

- Renormalization scheme in $\alpha_{\mathrm{s}}\left(\mu_{r}^{2}\right)$
- Perturbative truncation \longrightarrow sum rule not exact
- Parametization of observable quantities

Evolution with PDFs

- Factorization scheme and scale
- Renormalization scheme in $\alpha_{\mathrm{s}}\left(\mu_{r}^{2}\right)$
- Easy to enforce an exact sum rule
- Parametization of non-observable quantities

Comparison with conventional DGLAP evolution

Differences in values from:

- uncertainty in PDFs from factorization scheme and scale dependence (error band not shown)
- perturbative truncation

Six observable basis (work in progress)

- Full three-flavor basis: $u, \bar{u}, d, \bar{d}, s=\bar{s}$, and g
\longrightarrow Need six linearly independent DIS structure functions

Six observable basis (work in progress)

- Full three-flavor basis: $u, \bar{u}, d, \bar{d}, s=\bar{s}$, and g
\longrightarrow Need six linearly independent DIS structure functions
- We choose the NLO structure functions:

Neutral current γ^{*}, Z

- γ^{*} exhange $\rightarrow F_{2}$ and F_{L}
- Z boson exhange $\rightarrow F_{3}$

Charged current $W^{ \pm}$

W^{-}exhange $\rightarrow F_{2}^{\mathrm{W}^{-}}, F_{3}^{\mathrm{W}^{-}}$, and $F_{2 c}^{\mathrm{W}^{-}}$
(Claculations done, numerics in construction)

Cross sections in terms of physical basis

Example of Higgs production by gluon fusion

$$
\begin{aligned}
& x_{2} \text { menme } X \\
& \sigma(p+p \longrightarrow \mathrm{H}+X)=\int \mathrm{d} x_{1} \mathrm{~d} x_{2} g\left(x_{1}, \mu\right) g\left(x_{2}, \mu\right) \hat{\sigma}_{g g \rightarrow H+X}\left(x_{1}, x_{2}, \frac{m_{H}^{2}}{\mu^{2}}\right),
\end{aligned}
$$

where m_{H} is the Higgs mass, $g\left(x_{1}, \mu\right)$ and $g\left(x_{2}, \mu\right)$ are the gluon PDFs

Cross sections in terms of physical basis

Example of Higgs production by gluon fusion

$$
\begin{aligned}
& x_{2} \text { memem } X \\
& \sigma(p+p \longrightarrow \mathrm{H}+X)=\int \mathrm{d} x_{1} \mathrm{~d} x_{2} g\left(x_{1}, \mu\right) g\left(x_{2}, \mu\right) \hat{\sigma}_{g g \rightarrow H+X}\left(x_{1}, x_{2}, \frac{m_{H}^{2}}{\mu^{2}}\right),
\end{aligned}
$$

where m_{H} is the Higgs mass, $g\left(x_{1}, \mu\right)$ and $g\left(x_{2}, \mu\right)$ are the gluon PDFs
Plug in the gluon PDF in physical basis: $\quad g\left(x, \mu^{2}\right)=\sum_{j} C_{j g}^{-1}\left(Q^{2}, \mu^{2}\right) \otimes F_{j}\left(Q^{2}\right)$
where $F_{j}=F_{2}, F_{\mathrm{L}} / \frac{\alpha_{\mathrm{s}}}{2 \pi}, F_{3}, F_{2}^{\mathrm{W}^{-}}, F_{3}^{\mathrm{W}^{-}}, F_{2 \mathrm{c}}^{\mathrm{W}^{-}}$

Cross sections in terms of physical basis

Example of Higgs production by gluon fusion

$$
\begin{aligned}
& x_{1} \text { whell } \\
& \left.x_{2} \text { whme } \quad \text { (} p+p \longrightarrow \mathrm{H}+X\right)=\int \mathrm{d} x_{1} \mathrm{~d} x_{2} g\left(x_{1}, \mu\right) g\left(x_{2}, \mu\right) \hat{\sigma}_{g g \rightarrow H+X}\left(x_{1}, x_{2}, \frac{m_{H}^{2}}{\mu^{2}}\right),
\end{aligned}
$$

where m_{H} is the Higgs mass, $g\left(x_{1}, \mu\right)$ and $g\left(x_{2}, \mu\right)$ are the gluon PDFs
Plug in the gluon PDF in physical basis: $\quad g\left(x, \mu^{2}\right)=\sum_{j} C_{j g}^{-1}\left(Q^{2}, \mu^{2}\right) \otimes F_{j}\left(Q^{2}\right)$ where $F_{j}=F_{2}, F_{\mathrm{L}} / \frac{\alpha_{\mathrm{s}}}{2 \pi}, F_{3}, F_{2}^{\mathrm{W}^{-}}, F_{3}^{\mathrm{W}^{-}}, F_{2 \mathrm{c}}^{\mathrm{W}^{-}}$

$$
\begin{aligned}
& \sigma(p+p \longrightarrow H+X)= \\
& \int \mathrm{d} x_{1} \mathrm{~d} x_{2} \hat{\sigma}_{g g \rightarrow H+X}\left(x_{1}, x_{2}, \frac{m_{H}^{2}}{\mu^{2}}\right)\left[\sum_{j} C_{j g}^{-1}\left(Q^{2}, \mu^{2}\right) \otimes F_{j}\left(Q^{2}\right)\right]_{x_{1}}\left[\sum_{k} C_{k g}^{-1}\left(Q^{2}, \mu^{2}\right) \otimes F_{k}\left(Q^{2}\right)\right]_{x_{2}}
\end{aligned}
$$

Cross sections in terms of physical basis

Example of Higgs production by gluon fusion

$$
\begin{aligned}
& x_{2} \text { memeer } X \\
& \sigma(p+p \longrightarrow \mathrm{H}+X)=\int \mathrm{d} x_{1} \mathrm{~d} x_{2} g\left(x_{1}, \mu\right) g\left(x_{2}, \mu\right) \hat{\sigma}_{g g \rightarrow H+X}\left(x_{1}, x_{2}, \frac{m_{H}^{2}}{\mu^{2}}\right),
\end{aligned}
$$

where m_{H} is the Higgs mass, $g\left(x_{1}, \mu\right)$ and $g\left(x_{2}, \mu\right)$ are the gluon PDFs
Plug in the gluon PDF in physical basis: $\quad g\left(x, \mu^{2}\right)=\sum_{j} C_{j g}^{-1}\left(Q^{2}, \mu^{2}\right) \otimes F_{j}\left(Q^{2}\right)$ where $F_{j}=F_{2}, F_{\mathrm{L}} / \frac{\alpha_{\mathrm{s}}}{2 \pi}, F_{3}, F_{2}^{\mathrm{W}^{-}}, F_{3}^{\mathrm{W}^{-}}, F_{2 \mathrm{c}}^{\mathrm{W}^{-}}$

$$
\begin{aligned}
& \sigma(p+p \longrightarrow H+X)= \\
& \int \mathrm{d} x_{1} \mathrm{~d} x_{2} \hat{\sigma}_{g g \rightarrow H+X}\left(x_{1}, x_{2}, \frac{m_{H}^{2}}{\mu^{2}}\right)\left[\sum_{j} C_{j g}^{-1}\left(Q^{2}, \mu^{2}\right) \otimes F_{j}\left(Q^{2}\right)\right]_{x_{1}}\left[\sum_{k} C_{k g}^{-1}\left(Q^{2}, \mu^{2}\right) \otimes F_{k}\left(Q^{2}\right)\right]_{x_{2}}
\end{aligned}
$$

Harland-Lang and Thorne 1811.08434: explicit μ dependence vanishes and terms $\log \left(Q^{2} / m_{H}^{2}\right)$ are left behind
\longrightarrow no need to choose relation between μ and Q or m_{H}

Summary

- Motivation: future DIS measurements at the Electron-Ion Collider
- Goal: formulate DGLAP evolution directly for physical observables
- Motivation: future DIS measurements at the Electron-Ion Collider
- Goal: formulate DGLAP evolution directly for physical observables
- We have established physical basis at NLO in α_{s} for six observables; $F_{2}, F_{\mathrm{L}}, F_{3}, F_{2}^{\mathrm{W}^{-}}, F_{3}^{\mathrm{W}^{-}}$, and $F_{2 \mathrm{c}}^{\mathrm{W}^{-}}$
- Motivation: future DIS measurements at the Electron-Ion Collider
- Goal: formulate DGLAP evolution directly for physical observables
- We have established physical basis at NLO in α_{s} for six observables; $F_{2}, F_{\mathrm{L}}, F_{3}, F_{2}^{\mathrm{W}^{-}}, F_{3}^{\mathrm{W}^{-}}$, and $F_{2 \mathrm{c}}^{\mathrm{W}^{-}}$
- Scheme dependence of PDFs starts to play part at NLO in α_{s} \longrightarrow By using the NLO physical basis, we are able to avoid scheme dependence
- Motivation: future DIS measurements at the Electron-Ion Collider
- Goal: formulate DGLAP evolution directly for physical observables
- We have established physical basis at NLO in α_{s} for six observables; $F_{2}, F_{\mathrm{L}}, F_{3}, F_{2}^{\mathrm{W}^{-}}, F_{3}^{\mathrm{W}^{-}}$, and $F_{2 \mathrm{c}}^{\mathrm{W}^{-}}$
- Scheme dependence of PDFs starts to play part at NLO in α_{s} \longrightarrow By using the NLO physical basis, we are able to avoid scheme dependence
- What next:
- Study how LHC cross sections, e.g. Drell-Yan, are expressed in physical basis
- Obtain physical basis including also heavy quarks

Backup: Inverting the gluon PDF

Gluon PDF in mellin space

$$
\begin{gathered}
g(n)=\frac{1}{C_{F_{\mathrm{L}} g}^{(1)}(n)}\left[\frac{1}{\bar{e}_{q}^{2}} \widetilde{F}_{\mathrm{L}}(n)-C_{F_{\mathrm{L}} \Sigma}^{(1)}(n) \Sigma(n)\right] \\
\frac{1}{C_{F_{\mathrm{L}} g}^{(1)}(n)}=\frac{1}{8 T_{\mathrm{R}} z_{0}^{n}} \int_{0}^{1} \mathrm{~d} z z^{n+2} \delta^{\prime \prime}\left(z-z_{0}\right),
\end{gathered}
$$

where $\left.z_{0} \in\right] 0,1[$ is an arbitrary constant that cancels in final result.

$$
\begin{aligned}
g\left(x, Q^{2}\right)= & \int_{x}^{1} \frac{d z}{z} \delta(1-z)\left\{\frac{C_{\mathrm{F}}}{4 T_{\mathrm{R}} n_{\mathrm{f}} \bar{e}_{q}^{2}}\left[\frac{x}{z} \frac{\mathrm{~d}}{\mathrm{~d} \frac{x}{z}}-2\right] \frac{F_{2}\left(\frac{x}{z}, Q^{2}\right)}{\frac{x}{z}}\right. \\
& \left.+\frac{2 \pi}{\alpha_{\mathrm{s}}\left(Q^{2}\right)} \frac{1}{8 T_{\mathrm{R}} n_{\mathrm{f}} \overline{\mathrm{~F}}_{q}^{2}}\left[\frac{x^{2}}{z^{2}} \frac{\mathrm{~d}^{2}}{\mathrm{~d}\left(\frac{x}{z}\right)^{2}}-2 \frac{x}{z} \frac{\mathrm{~d}}{\mathrm{~d} \frac{x}{z}}+2\right] \frac{F_{\mathrm{L}}\left(\frac{x}{z}, Q^{2}\right)}{\frac{x}{2}}\right\} \\
\equiv & \frac{1}{n_{\mathrm{f}} \bar{e}_{q}^{2}}\left\{C_{g \widetilde{F}^{\prime} \widetilde{\prime}_{2}^{\prime}} \otimes \widetilde{F}^{\prime}{ }_{2}+C_{g \widetilde{F}_{2}} \otimes \widetilde{F}_{2}+C_{g \widetilde{F}^{\prime \prime} \mathrm{L}} \otimes \widetilde{F^{\prime \prime}}{ }_{\mathrm{L}}+C_{g \widetilde{F}^{\prime} \mathrm{L}} \otimes \widetilde{F}_{\mathrm{L}}+C_{g \widetilde{F}_{\mathrm{L}}} \otimes \widetilde{F}_{\mathrm{L}}\right\}
\end{aligned}
$$

Backup: Gluon PDF in physical basis

NLO structure functions $F_{i}=\Sigma_{j} C_{i j} \otimes f_{j}$, where $F_{i}=F_{2}, F_{L} / \alpha_{\mathrm{s}}$ and $f_{j}=\Sigma, g$ Structure functions calculated using CT14nlo_NF3

$x g\left(x, Q^{2}\right)=x \Sigma_{i} C_{i g}^{-1} \otimes F_{i}$.
Perturbative truncation of $C_{i g}^{-1}$ to the orders $\alpha_{\mathrm{s}}^{0}, \alpha_{\mathrm{s}}^{1}$, and α_{s}^{2} is shown.

Backup: Quark singlet in physical basis

NLO structure functions $F_{i}=\Sigma_{j} C_{i j} \otimes f_{j}$, where $F_{i}=F_{2}, F_{L} / \alpha_{\mathrm{s}}$ and $f_{j}=\Sigma, g$ Structure functions calculated using CT14nlo_NF3

$x \sum e_{q}^{2}\left(q\left(x, Q^{2}\right)+\bar{q}\left(x, Q^{2}\right)\right)=x \Sigma_{i} C_{i g}^{-1} \otimes F_{i}$.
Perturbative truncation of $C_{i g}^{-1}$ to the orders $\alpha_{\mathrm{s}}^{0}, \alpha_{\mathrm{s}}^{1}$, and α_{s}^{2} is shown.

Backup: LO DGLAP evolution

F_{2} CT14 LO

$x F_{3}$ CT14 LO

F_{L} CT14 LO

$F_{2}^{\mathrm{W}^{-}} \mathrm{CT} 14 \mathrm{LO}$

