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Motivation

Structure functions will be measured at Electron-Ion Collider (EIC)

Problems with PDFs
I Parametrize non-observable quantities
I Factorization scheme dependence
I Need to define the relation between factorization scale and a physical scale

Physical basis ≡ set of linearly independent DIS observables

DGLAP evolution of observables in a physical basis
I Avoiding the problems with PDFs
I More straightforward to compare to experimental data

Previously discussed e.g. in Harland-Lang and Thorne 1811.08434, Hentschinski
and Stratmann 1311.2825, W.L. van Neerven and A. Vogt hep-ph/9907472

The novelty of our work:
I Momentum space
I Full three-flavor basis at NLO

Continuation for LO physical basis 2304.06998
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Straightforward example with only two observables
q, −q2 = Q2

h

γ∗

Fi(x ,Q2) =
∑

j
CFi fj (Q2, µ2)⊗ fj(µ2),

where Fi = F2,FL/
αs
2π , and fj = Σ, g

Quark singlet:
Σ(x , µ2) =

∑nf
q
[
q(x , µ2) + q(x , µ2)

]
, nf = 3

Gluon PDF: g(x , µ2)

First step: invert the linear mapping (difficult because f ⊗ g =
∫ 1

x
dz
z f (z)g

( x
z
)
)

fj(µ2) =
∑

i C−1
Fi fj

(Q2, µ2)⊗ Fi(Q2) +O(α2
s)

DGLAP evolution in physical basis
dFi(x ,Q2)

d log(Q2)
=

∑
j

dCFi fj (Q2, µ2)

d log(Q2)
⊗ fj(µ2)

=
∑

j

dCFi fj (Q2, µ2)

d log(Q2)
⊗

∑
k

C−1
Fk fj

(Q2, µ2)⊗ Fk(Q2) +O(α3
s)
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Scheme and scale dependence at NLO

DGLAP evolution in physical basis:

dFi(x ,Q2)

d log(Q2)
=

∑
j

dCFi fj (Q2, µ2)

d log(Q2)
⊗
∑

k
C−1

Fk fj
(Q2, µ2)⊗ Fk(Q2) +O(α3

s)

=
∑

k
Pik ⊗ Fk(Q2) +O(α3

s)

Kernels Pik are independent of the factorization scheme and scale

Pij ’s determined by:
Splitting functions
Coefficient functions
−→ The scheme and scale dependence exactly cancels between these two
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Inverting the gluon PDF at NLO

Simple case without quarks
Invert g(x) from F̃L = C (1)

FLg ⊗ g + αs(Q2)
2π C (2)

FLg ⊗ g F̃L(x ,Q2) ≡ 2π
αs(Q2)

FL(x,Q2)
x

Define differential operator P̂(x) ≡ 1
8TRnf ē2

q

[
x2 d2

dx2 − 2x d
dx + 2

]
Notice g(x) = P̂(x)

[
C (1)

FLg ⊗ g
]

Get C (1)
FLg ⊗ g from F̃L: C (1)

FLg ⊗ g = F̃L − αs(Q2)
2π C (2)

FLg ⊗ g

g(x) = P̂(x)
[
F̃L(x)−

αs(Q2)

2π C (2)
FLg ⊗ g

]
Plug in g(x) = P̂(x)F̃L(x) +O

(
αs(Q2)

)
to the right hand side

g(x) = P̂(x)F̃L(x)−
αs(Q2)

2π P̂(x)
[
C (2)

FLg ⊗ P̂F̃L

]
+O

(
α2

s(Q2)
)
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Comparison with conventional DGLAP evolution

Physical basis evolution
Renormalization scheme in αs(µ

2
r )

Perturbative truncation
−→ sum rule not exact
Parametization of observable
quantities

Evolution with PDFs
Factorization scheme and scale
Renormalization scheme in αs(µ

2
r )

Easy to enforce an exact sum rule
Parametization of non-observable
quantities
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Comparison with conventional DGLAP evolution

101 102 103

Q2 (GeV2)
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F 2
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Differences in values from:
uncertainty in PDFs from factorization scheme and scale dependence (error
band not shown)
perturbative truncation
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Six observable basis (work in progress)

Full three-flavor basis: u, ū, d , d̄ , s = s̄, and g
−→ Need six linearly independent DIS structure functions

We choose the NLO structure functions:
q, −q2 = Q2

γ∗,Z

X

Neutral current γ∗, Z
γ∗ exhange → F2 and FL

Z boson exhange → F3

q, −q2 = Q2

W ±

X

Charged current W ±

W − exhange → F W−

2 , F W−

3 , and F W−

2c

(Claculations done, numerics in construction)
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Cross sections in terms of physical basis

Example of Higgs production by gluon fusion

H
X

x1

x2

σ(p + p −→ H + X) =

∫
dx1dx2g(x1, µ)g(x2, µ)σ̂gg→H+X (x1, x2,

m2
H

µ2 ),

where mH is the Higgs mass, g(x1, µ) and g(x2, µ) are the gluon PDFs

Plug in the gluon PDF in physical basis: g(x , µ2) =
∑

j C−1
jg (Q2, µ2)⊗ Fj(Q2)

where Fj = F2,FL/
αs
2π ,F3,F W−

2 ,F W−
3 ,F W−

2c

σ(p + p −→ H + X) =∫
dx1dx2σ̂gg→H+X (x1, x2,

m2
H

µ2 )

∑
j

C−1
jg (Q2, µ2)⊗ Fj (Q2)


x1

[∑
k

C−1
kg (Q2, µ2)⊗ Fk(Q2)

]
x2

Harland-Lang and Thorne 1811.08434: explicit µ dependence vanishes and terms
log

(
Q2/m2

H
)

are left behind
−→ no need to choose relation between µ and Q or mH
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Summary

Motivation: future DIS measurements at the Electron-Ion Collider

Goal: formulate DGLAP evolution directly for physical observables

We have established physical basis at NLO in αs for six observables;
F2, FL, F3, F W−

2 , F W−

3 , and F W−

2c

Scheme dependence of PDFs starts to play part at NLO in αs
−→ By using the NLO physical basis, we are able to avoid scheme
dependence

What next:
I Study how LHC cross sections, e.g. Drell-Yan, are expressed in physical basis
I Obtain physical basis including also heavy quarks
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I Study how LHC cross sections, e.g. Drell-Yan, are expressed in physical basis
I Obtain physical basis including also heavy quarks
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Backup: Inverting the gluon PDF

Gluon PDF in mellin space

g(n) = 1
C (1)

FLg (n)

[
1
ē2

q
F̃L(n)− C (1)

FLΣ
(n)Σ(n)

]

1
C (1)

FLg (n)
=

1
8TRzn

0

∫ 1

0
dzzn+2δ′′(z − z0),

where z0 ∈]0, 1[ is an arbitrary constant that cancels in final result.

g(x ,Q2) =

∫ 1

x

dz
z
δ(1 − z)

{
CF

4TRnf ē2
q

[
x
z

d
d x

z
− 2

]
F2

( x
z ,Q

2)
x
z

+
2π

αs(Q2)

1
8TRnf ē2

q

[
x2

z2
d2

d
( x

z
)2 − 2

x
z

d
d x

z
+ 2

]
FL

( x
z ,Q

2)
x
z

}

≡
1

nf ē2
q

{
CgF̃ ′2

⊗ F̃ ′2 + CgF̃2
⊗ F̃2 + CgF̃ ′′L

⊗ F̃ ′′L + CgF̃ ′L
⊗ F̃ ′L + CgF̃L

⊗ F̃L

}
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Backup: Gluon PDF in physical basis
NLO structure functions Fi = ΣjCij ⊗ fj , where Fi = F2,FL/αs and fj = Σ, g
Structure functions calculated using CT14nlo_NF3
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Backup: Quark singlet in physical basis
NLO structure functions Fi = ΣjCij ⊗ fj , where Fi = F2,FL/αs and fj = Σ, g
Structure functions calculated using CT14nlo_NF3

101 102

0.28

0.29

0.30

0.31

0.32

0.33
x

e2 q
(q

(x
,Q

2 )
+

q(
x,

Q
2 )

) (1)
( s)
( 2

s )

101 102

0.30

0.35

0.40

0.45

0.50

0.55

0.60 (1)
( s)
( 2

s )

101 102

Q2

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

x
e2 q

(q
(x

,Q
2 )

+
q(

x,
Q

2 )
) (1)

( s)
( 2

s )

101 102

Q2

2

3

4

5

6

7

x = 10 1

x = 10 2

x = 10 4 x = 10 6

(1)
( s)
( 2

s )

xΣe2
q(q(x ,Q2) + q̄(x ,Q2)) = xΣi C−1

ig ⊗ Fi .
Perturbative truncation of C−1

ig to the orders α0
s, α1

s, and α2
s is shown. 12 / 9



Backup: LO DGLAP evolution
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