LHC differential top-quark pair production cross sections in the ABMP16 PDF fit

Sergey Alekhin¹, Maria Vittoria Garzelli¹, Sven-Olaf Moch¹, <u>Sasha Zenaiev¹</u> with input from Javier Mazzitelli²

¹ Hamburg University ² PSI

arxiv:2311.05509

arxiv:24XX.XXXXX in preparation

DIS2024 (Grenoble, France) 9 Apr 2024

Introduction

Why study $t\bar{t}$ production?

- *m_t* provides a hard scale
 ⇒ ultimate probe of pQCD (NLO, aNNLO, NNLO, ...)
- Produced mainly via gg ⇒ constrain gluon PDF at high x
- Production sensitive to α_s and m_t
- May provide insight into possible new physics

- 1D measurements: overall good agreement, but reveal some trends
- 2D [EPJ C77 (2017) 459, PRD97 (2018) 112003]: study production dynamics in more detail
- 3D [EPJ C80 (2020) 658]: simultaneously constrain α_s (extra jets), m^{pole}_t, PDFs

Introduction

Example:

Why study *tt* production?

- m_t provides a hard scale \Rightarrow ultimate probe of pQCD (NLO, aNNLO, NNLO, ...)
- Produced mainly via gg
 ⇒ constrain gluon PDF at high x
- Production sensitive to α_s and m_t^{pole}
- May provide insight into possible new physics

- Simultaneous extraction of PDFs, α_s, m_t^{pole} using normalised triple-differential cross sections at NLO
- Extended to MS, MSR schemes in JHEP 04 (2021) 043 [Garzelli, Kemmler, Moch, Zenaiev]

Scope of this work

- NNLO calculations for total and fully differential $t\bar{t}$ (q_T subtraction) are now publicly available with MATRIX framework [Catani, Devoto, Grazzini, Kallweit, Mazzitelli Phys.Rev.D 99 (2019) 5, 051501; JHEP 07 (2019) 100]
 - fully differential NNLO calculations were also published in JHEP 04 (2017) 071 [Czakon, Heymes, Mitov], but no public code available
- Multi-differential $t\bar{t}$ measurements enable extraction of PDFs, α_s , m_t^{pole}
 - ► for 3D x-sections $M(t\bar{t})$, $y(t\bar{t})$, N_{jet} [CMS TOP-18-004] NNLO calculations are not available for $t\bar{t}$ + jets
 - therefore for the time being we focus on double-differential $M(t\bar{t})$, $y(t\bar{t})$ x-sections
 - * $M(t\bar{t})$ provides sensitivity to m_t
 - * $y(t\bar{t})$ provides sensitivity to PDFs via relation to partonic momentum fraction *x*: at LO $x_{1,2} = (M(t\bar{t})/\sqrt{s}) \exp [\pm y(t\bar{t})]$
- Recently we have extracted m^{pole}_t from the total and differential ATLAS and CMS measurements of tt
 t production using different PDF sets [Garzelli, Mazzitelli, Moch, Zenaiev arXiv:2311.05509]
 - overall uncertainty on m^{pole} is 0.3 GeV (experimental, PDF, scale variations)
 - possible extra uncertainty (not accounted for): renormalon ambiguity, m_t in MC used to unfold the data to parton level
- Now we do a global PDF fit with total and differential $t\bar{t}$ within the ABMP16 framework
 - using collider and fixed-target DIS, DY, updated single top and tt data (see BACKUP)

Previous work: extraction of m^{pole}_t[Garzelli, Mazzitelli, Moch, SZ arXiv:2311.05509]

S. Alekhin, M.V. Garzelli, S.-O. Moch, S. Zenaiev LHC differential tt x-sections in ABMP16 PDF fit

Theoretical calculations with MATRIX framework

- Using "private" (custom) version of MATRIX provided by Javier Mazzitelli
- Interfaced to PineAPPL [Carrazza at al., JHEP 12 (2020) 108] to produce PDF interpolation grids which are further used in xFitter https://gitlab.com/fitters/xfitter
 - For reproduce NNLO calculations using any PDF set and/or varied μ_r , μ_f in \sim seconds
 - interface implemented privately and only for $t\bar{t}$ production
 - no NNLO/NLO K-factors etc.
- Further modifications to MATRIX to make possible runs with $\Delta \sigma_{t\bar{t}} < 1\%$
 - skip calculation of identical things (tailored for $t\bar{t}$)
 - adapted to DESY Bird Condor cluster and local multicore machines
 - technical fixes related to memory and disk space usage etc.
- We did 6 runs with $m_t^{\text{pole}} \in [165, 177.5]$ GeV with step of 2.5 GeV and $\Delta \sigma_{t\bar{t}} = 0.2\%$
 - ▶ \approx 350K \times 6 \approx 2M CPU hours (200 years on single CPU, 3 months of real time)
 - $\blacktriangleright\,$ for differential distributions, integration uncertainties in bins are $\lesssim 0.5\%$
- Differential distributions obtained with fixed $r_{cut} = 0.0015$ (q_T subtraction)
 - checked that extrapolation to r_{cut} = 0 for total cross section produces difference < 1% (see also S. Catani et al., JHEP 07 (2019) 100)
- $\mu_r = \mu_f = H_T/4$, $H_T = \sqrt{m_t^2 + p_T^2(t)} + \sqrt{m_{\bar{t}}^2 + p_T^2(\bar{t})}$, varied up and down by factor 2 with $0.5 \le \mu_r/\mu_f \le 2$ (7-point method)
- For PDF and top quark mass fit, m^{pole}_t is converted to m_t(m_t), as customary in ABMP16

d~(+++)

Selection of data:

- all measurements of total $\sigma(t\bar{t})$:
 - 10 data points, including recently combined CMS+ATLAS cross section at 7 and 8 TeV
- differential measurements $\frac{1}{\sigma(t\bar{t})} \frac{d\sigma(t\bar{t})}{dQ}$ which satisfy following criteria:
 - as function of $M(t\bar{t})$ (if available, 2D $M(t\bar{t})$ and $y(t\bar{t})$)
 - unfolded to parton level (no cuts on p_T , y of leptons or jets): no LHCb data
 - normalized cross sections (to avoid unknown correlation with total $\sigma(t\bar{t})$ and to reduce unknown correlations between different data sets)
 - bin-by-bin correlations are available
 - for the moment only Run-2 2D data included in the PDF fit (besides the total $t\bar{t}$ x-section data) $-(+\overline{+})$

O(n)								10(11)			
Experiment	decay channel	dataset	luminosity	\sqrt{s}			$\sigma(t\bar{t})$	dO			
ATLAS & CMS	combined	2011	5 fb^{-1}	7 TeV	Experiment	decay channel	dataset	luminosity	\sqrt{s}	observable(s)	
ATLAS & CMS	combined	2012	20 fb^{-1}	8 TeV	CMS	semileptonic	2016 - 2018	137 fb^{-1}	$13 { m TeV}$	$M(t\bar{t}), y(t\bar{t}) $	7
ATLAS	dileptonic, semileptonic	2011	257 pb^{-1}	5.02 TeV	CMS	dileptonic	2016	35.9 fb^{-1}	$13 { m TeV}$	$M(t\bar{t}), y(t\bar{t}) $	
CMS	dileptonic	2011	302 pb^{-1}	5.02 TeV	ATLAS	semileptonic	2015 - 2016	36 fb^{-1}	13 TeV	$M(t\bar{t}), y(t\bar{t}) $	
ATLAS	dileptonic	2015-2018	140 fb^{-1}	13 TeV	ATLAS	all-hadronic	2015 - 2016	36.1 fb^{-1}	$13 { m TeV}$	$M(t\bar{t}), y(t\bar{t}) $	
ATLAS	semileptonic	2015-2018	$139 \ {\rm fb}^{-1}$	$13 \mathrm{TeV}$	CMS	dileptonic	2012	19.7 fb^{-1}	8 TeV	$M(t\bar{t}), y(t\bar{t}) $	
CMS	dileptonic	2016	35.9 fb^{-1}	13 TeV	ATLAS	semileptonic	2012	20.3 fb^{-1}	8 TeV	$M(t\bar{t})$	1
CMS	semileptonic	2016-2018	137 fb^{-1}	13 TeV	ATLAS	dileptonic	2012	20.2 fb^{-1}	8 TeV	$M(t\bar{t})$	ł
ATLAS	dileptonic	2022	11.3 fb^{-1}	13.6 TeV	ATLAS	dileptonic	2011	4.6 fb^{-1}	7 TeV	$M(t\bar{t})$	4
CMS	dileptonic, semileptonic	2022	$1.21 { m ~fb^{-1}}$	13.6 TeV	ATLAS	semileptonic	2011	$4.6 {\rm fb}^{-1}$	$7 { m TeV}$	$M(t\bar{t})$	
				-							

S. Alekhin, M.V. Garzelli, S.-O. Moch, S. Zenaiev LHC differential tr x-sections in ABMP16 PDF fit

CMS 2108.02803 vs NNLO predictions using different PDFs

- Reported χ^2 values with (and without) PDF uncertainties
- All PDF sets describe data reasonably well, with best description by ABMP16
 - CT18, MSHT20 and NNPDF40 show clear trend w.r.t data at high $y(t\bar{t})$ (large x)

CMS 2108.02803 vs NNLO predictions using different PDFs

- Low $M(t\bar{t})$: strong dependence on m_t^{pole} via threshold effects
- High $M(t\bar{t})$: opposite dependence due to cross section normalization

CMS 2108.02803 vs NNLO predictions using different PDFs

- Scale variations < 1% at low $M(t\bar{t})$ (largest cancellation), reach \approx 4% at high $M(t\bar{t})$
 - \rightarrow these data are useful to provide constraints on m_t and PDFs

CMS 2108.02803 in ABMP16 PDF fit

CMS (√s=13 TeV, 137 fb⁻¹, pp --> ttX --> ljetX) 2108.02803

- Good description of the data
- Significantly constrained PDF uncertainty band

Other $t\bar{t}$ differential data in ABMP16 PDF fit

 $[1/\sigma d(\sigma)/d(|y_{tt}|)] / MATRIX -$ 300 <M_<400 GeV 400 <M_<500 GeV 0.1 0.05 .0.05 -0.1 ABMP16+CMS13, -0.15 CMS13, 0.15 500 <M_a<650 GeV 650 <M_a<1500 GeV 0. 0.05 -0.05 -0.1 -0.15

1 1.5 2

CMS (\s=13 TeV, 36 fb⁻¹, pp --> ttX --> l⁺IX) 1904.05237

• ATLAS ljet data tend to be above theory predictions at $M(t\bar{t}) \gtrsim 1000$ GeV (but still ok within large data uncertainties)

2

y.;

0.5

y.:

- ATLAS hadronic data tend to be below theory predictions at $M(t\bar{t}) \gtrsim 700 \text{ GeV}$ (but still ok within large data uncertainties)
- In summary, all data are in good agreement with NNLO theoretical predictions and put significant constraints on the PDFs

$\sigma(t\bar{t})$ nd single t in ABMP16 PDF fit

Experiment	Data set	\sqrt{s} (TeV)	Reference	NDP	χ^2		
					Ι	Π	III
ATLAS	ATLAS 13 _{ljet}	13	25	19	34.2	27.2	-
	ATLAS 13 _{had}	13	26	10	11.8	12.1	-
CMS	$CMS13_{ll}$	13	24	15	21.1	-	19.9
	$CMS13_{ljet}$	13	22	34	42.2	_	40.8

- I: both ATLAS and CMS
- II: only ATLAS
- III: only CMS
- $\rightarrow\,$ Overall good description of data by NNLO theoretical predictions, but some tension between ATLAS and CMS differential $t\bar{t}$ data is noticeable

$m_t(m_t)$ and α_s in ABMP16 PDF fit

Data set	$m_t(m_t)$ (GeV)	χ^2/NDP
ATLAS 13 _{ljet}	158.9 ± 1.3	25.2/19
ATLAS 13had	160.5 ± 2.0	11.3/10
$CMS 13_{ll}$	161.1 ± 1.4	13.9/15
CMS 13 _{ljet}	158.7 ± 0.9	37.4/34

- Overall, good agreement between m_t(m_t) extracted from different data sets
- Good agreement with ABMP16 fit and ~ 50% reduced uncertainty on m_t(m_t)

$\alpha_s(M_Z,$	$m_t(m_t)~({\rm GeV})$	
Fitted	0.1148(9)	160.5(6)
	0.114	160.1(4)
	0.116	161.0(4)
Fixed	0.118	161.9(4)
	0.120	162.7(4)
	0.122	163.5(4)

• Positive correlation between α_s and $m_t(m_t)$ reduced once $t\bar{t}$ differential data included in the fit

Fitted gluon PDF (work in progress)

- Significant reduction of the gluon PDF uncertainty once differential tt data are included
- The fitted gluon PDF is consistent with ABMP16
- Some tension between ATLAS and CMS is noticeable
- Work in progess on producing this fit in the xFitter framework (more details in my next talk)

Summary & Outlook

Summary

- Measurements of $t\bar{t}$ production at LHC have very rich potential for phenomenology
 - provide information on m_t, α_S and gluon PDF
- We have extracted m_t^{pole} using most recent ATLAS and CMS Run-1,2,3 measurements of tt
 production with a few hundred MeV precision [arXiv:2311.05509]
 - however, pushing this to higher precision might require better understanding of the top quark mass definition used in MC to unfold the data to parton level (+ renormalon)
- Included most recent Run-2 measurements in ABMP16 fit [to appear arXiv:24XX.XXXX]
 - the new data are consistent with ABMP16
 - ▶ significant (~ of factor 2) constraints on the gluon PDF at $x \ge 0.1$
 - improved (~ of factor 2) determination of $m_t(m_t)$
 - reduced correlation between α_S and $m_t(m_t)$

Outlook

- Current experimental accuracy is already at % level for normalized tt cross sections
 - theory tools require a lot of resources to compute predictions: need to improve
- Differential measurements of $t\bar{t}$ production seem to show some tension
 - ATLAS+CMS effort on combining differential $t\bar{t}$ data will be useful
- LHCb covers a complementary kinematic region sensitive to higher x, but no measurements unfolded to parton level (without cuts p_T, y of decay products) were done
 - would be useful to have such measurements from LHCb
- It would be very nice to have NNLO differential calculations for $t\bar{t}$ +jets
 - would allow direct constraints on α_S

BACKUP

Data in ABMP16 fit [Alekhin et al., arXiv:1701:05838] (1)

Experiment	Process	Reference	NDP	χ^2
DIS				
HERA I+II	$e^{\pm}p \rightarrow e^{\pm}X$	4	1168	1510
	$e^{\pm}p \rightarrow \stackrel{(-)}{\nu} X$			
BCDMS	$\mu^+ p \rightarrow \mu^+ X$	61	351	411
NMC	$\mu^+ p \rightarrow \mu^+ X$	60	245	343
SLAC-49a	$e^-p \rightarrow e^-X$	54 62	38	59
SLAC-49b	$e^-p \rightarrow e^-X$	54 62	154	171
SLAC-87	$e^-p \rightarrow e^-X$	54 62	109	103
SLAC-89b	$e^-p \rightarrow e^-X$	56 62	90	79
DIS heavy-quark pro	duction			
HERA I+II	$e^{\pm}p \rightarrow e^{\pm}cX$	63	52	62
HI	$e^{\pm}p \rightarrow e^{\pm}bX$	15	12	5
ZEUS	$e^{\pm}p \rightarrow e^{\pm}bX$	16	17	16
CCFR	${\stackrel{(-)}{\nu}}p \rightarrow \mu^{\pm}cX$	64	89	62
CHORUS	$\nu p \rightarrow \mu^+ c X$	18	6	7.6
NOMAD	$\nu p \rightarrow \mu^+ c X$	17	48	59
NuTeV	$\nu \rightarrow \mu^{\pm} cX$	64	89	49
DY				
FNAL-605	$pCu \rightarrow \mu^+\mu^-X$	67	119	165
FNAL-866	$pp \rightarrow \mu^+ \mu^- X$	68	39	53
	$pD \rightarrow \mu^+ \mu^- X$			
Top-quark productio	n			
ATLAS, CMS	$pp \rightarrow tqX$	27-32	10	2.3
CDF&DØ	$\bar{p}p \rightarrow tbX$	53	2	1.1
	$\bar{p}p \rightarrow tqX$			
ATLAS, CMS	$pp \rightarrow t\bar{t}X$	33-52	23	13
CDF&DØ	$\bar{n}n \rightarrow t\bar{t}X$	53	1	0.2

$t\bar{t}$ and single top LHC data have been updated to latest LHCTOPWG:

S. Alekhin, M.V. Garzelli, S.-O. Moch, S. Zenaiev LHC differential tt x-sections in ABMP16 PDF fit

Data in ABMP16 fit [Alekhin et al., arXiv:1701:05838] (2)

Experiment		ATI	LAS	CMS		DØ		LHCb		
\sqrt{s} (TeV)		7	13	7	8	1.96		7	8	
Final states		$W^+ \rightarrow l^+ \nu$	$W^+ \to l^+ \nu$	$W^+ \to \mu^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow e^+ \nu$	$W^+ \to \mu^+ \nu$	$Z \rightarrow e^+ e^-$	$W^+ \to \mu^+ \nu$
		$W^- \rightarrow l^- \nu$	$W^- ightarrow l^- u$	$W^- \rightarrow \mu^- \nu$	$W^- \rightarrow \mu^- \nu$	$W^- \rightarrow \mu^- \nu$	$W^- \rightarrow e^- \nu$	$W^- \rightarrow \mu^- \nu$		$W^- \rightarrow \mu^- \nu$
		$Z \rightarrow l^+ l^-$	$Z \rightarrow l^+ l^-$	(asym)		(asym)	(asym)	$Z \rightarrow \mu^+ \mu^-$		$Z \rightarrow \mu^+ \mu^-$
Cut on the lepton P_T		$P_T^l > 20 \text{ GeV}$	$P_T^e > 25 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^e > 25 \text{ GeV}$	$P_T^{\mu} > 20 \text{ GeV}$	$P_T^e > 20 \text{ GeV}$	$P_T^{\mu} > 20 \text{ GeV}$
Luminosity (1/fb)		0.035	0.081	4.7	18.8	7.3	9.7	1	2	2.9
Reference		66	26	24	25	23	22	19	[21]	20
NDP		30	6	11	22	10	13	31	17	32
	present analysis a	31.0	9.2	22.4	16.5	17.6	19.0	45.1	21.7	40.0
	CJ15 6	-	-	-	-	20	29	-	-	-
x ²	CT14 7	42	-	- ^b	-	-	34.7	-	-	-
	JR14 8	-	-	-	-	-	-	-	-	-
	HERAFitter [197]	-	-	-	-	13	19	-	-	-
	MMHT14 9	39	-	-	-	21	-	-	-	-
	NNPDF3.0 10	35.4	-	18.9	-	-	-	-	-	-

^a The ABM12 [] analysis has used older data sets from CMS and LHCb.

^b For the statistically less significant data with the cut of $P_T^{\mu} > 35$ GeV the value of $\chi^2 = 12.1$ was obtained.

TABLE VI: Compilation of precise data on W- and Z-boson production in pp and $p\bar{p}$ collisions and the χ^2 values obtained for these data sets in different PDF analyses using their individual definitions of χ^2 . The NNLO fit results are quoted as a default, while the NLO values are given for the CJ15 6 and HERAFitter [197] PDFs. Missing table entries indicate that the respective data sets have not been used in the analysis.

$\sigma(t\bar{t})$ vs NNLO predictions using different PDFs

• Fixed $m_t^{\text{pole}} = 172.5 \text{ GeV}, \, \mu_r = \mu_f = H_T/4$

- Reported χ^2 values with (and without) PDF uncertainties
- All PDF sets describe data reasonably well (depends on m^{pole}, α_S)
- Sensitivity to PDFs reduces with increasing \sqrt{s} (lower x probed)

$\sigma(t\bar{t})$ vs NNLO predictions using different m_t^{pole}

ABMP16, fixed
$$\mu_r = \mu_f = H_T/4$$

- Change of m_t^{pole} by 1 GeV \rightarrow change of $\sigma(t\bar{t})$ by \approx 3%
- Preferable $m_t^{\text{pole}} \sim$ 170–172.5 GeV (depends on PDF and α_S)

 $\sigma(t\bar{t})$ vs NNLO predictions with scale variations

- ABMP16, fixed $m_t^{\text{pole}} = 172.5 \text{ GeV}$
- Scale variations ^{+3%}_{-5%}:
 - larger than data uncertainty (best data uncertainty ±1.9%)
 - limit precision of m_t^{pole} extraction to 1 GeV
 - can be reduced by using e.g. $\overline{\text{MS}}$ mass $m_t(m_t)$ EPJ C74 (2014) 3167, JHEP04 (2021) 043

Extraction of m_t^{pole} : summary

- Extracted m_t^{pole} values with precision $\pm 0.3 \text{ GeV}$ are consistent with PDG value 172.5 $\pm 0.7 \text{ GeV}$
 - data uncertainty ~ 0.2 GeV
 - PDF uncertainty ~ 0.1 GeV
 - NNLO scale uncertainty ~ 0.2 GeV
- Significant dependence on PDFs (\sim 0.5 GeV):
 - different m^{pole}used in different PDFs
 - PDFs, m^{pole}_t, α_s should be determined simultaneously
- For CMS 1904.05237, NNLO results are consistent with published results obtained at NLO
 - good convergence of perturbative series
- Larger sensitivity comes from differential data
 - 2D differential x-sections in M(tt
), y(tt
) constrain m^{pole}_t, PDFs and (indirectly) α_S
 - ideally, 3D cross section in M(tt
), γ(tt
) and number of extra jets constrain α_S directly, but NNLO not yet available for tt
 +jets
- Possible effects from Coulomb and soft-gluon resummation near the tt production threshold are neglected: might be ~ 1 GeV?

[CMS Coll. EPJ C80 (2020) 658; Kiyo, Kuhn, Moch, Steinhauser, Uwer EPJ C60 (2009) 375; Mäkelä, Hoang, Lipka, Moch 2301.03546]

Extraction of m_t^{pole} : differential Run 1, Run 2

Run 1 differential

S. Alekhin, M.V. Garzelli, S.-O. Moch, S. Zenaiev LHC differential tt x-sections in ABMP16 PDF fit

Run 2 differential

170

172

Total unc.

HData unc.

PDF unc.

Scale unc.

174

Extraction of m_t^{pole} : dilepton vs semileptonic, ATLAS vs CMS

S. Alekhin, M.V. Garzelli, S.-O. Moch, S. Zenaiev LHC differential tt x-sections in ABMP16 PDF fit

Data vs NNLO predictions using different PDFs

Data vs NNLO predictions using different m_t^{pole}

Data vs NNLO predictions using different PDFs

Data vs NNLO predictions using different m_t^{pole}

Data vs NNLO predictions using different PDFs

Data vs NNLO predictions using different m_t^{pole}

Data vs NNLO predictions using different PDFs

Data vs NNLO predictions using different m_t^{pole}

Data vs NNLO predictions using different PDFs

Data vs NNLO predictions using different m_t^{pole}

Data vs NNLO predictions using different PDFs

Data vs NNLO predictions using different m_t^{pole}

Data vs NNLO predictions using different PDFs

Data vs NNLO predictions using different m_t^{pole}

Data vs NNLO predictions using different PDFs

Data vs NNLO predictions using different m_t^{pole}

Variation of r cut, validation vs JHEP 04 (2017) 071 by Czakon et al. [CHM]

Good agreement < 1%

S. Alekhin, M.V. Garzelli, S.-O. Moch, S. Zenaiev LHC differential tt x-sections in ABMP16 PDF fit

grids were produced with ABMP16

MATRIX vs HighTEA

S. Alekhin, M.V. Garzelli, S.-O. Moch, S. Zenaiev LHC differential tt x-sections in ABMP16 PDF fit

CMS TOP-18-004 checks

DESY 2018 summer school, L. Materne, bachelor thesis "Differential Top-Pair Production Cross Section with the CMS Detector - Optimization of Measurement Information", Karlsruher Institut für Technologie (KIT), Bachelorarbeit, 2018 [ETP-Bachelor-KA/2018-11]

S. Alekhin, M.V. Garzelli, S.-O. Moch, S. Zenaiev LHC differential tt x-sections in ABMP16 PDF fit

