Andrea Simonelli

Analytic Solutions of the DGLAP Evolution and

 Theoretical Uncertainties

DGLAP evolution overview

Flavor basis $\left\{f_{i / h}, \ldots, f_{g / h}\right\}$
$\frac{\partial}{\partial \log Q^{2}} f_{i / h}(x, Q)=\sum_{j} \int_{x}^{1} \frac{d z}{z} P_{i / j}\left(z, a_{S}(Q)\right) f_{j / h}\left(\frac{z}{x}, Q\right) \equiv \sum_{j} P_{i / j} \otimes f_{j / h}(x, Q)$
Coupled set of $2 \mathrm{~N}_{\mathrm{f}}+1$ differential equations

$$
\text { Evolution basis }\left\{V, q_{i j}^{ \pm}, \ldots,\binom{\Sigma}{g}\right\}
$$

Non-Singlet Sector

- Completely decoupled set

$$
\text { of } 2 \mathrm{~N}_{\mathrm{f}}-1 \text { differential equations. }
$$

$$
\begin{aligned}
& \frac{\partial}{\partial \log Q^{2}} V(x, Q)=P_{V} \otimes V(x, Q) \\
& \frac{\partial}{\partial \log Q^{2}} q_{i j}^{ \pm}(x, Q)=P_{ \pm} \otimes q_{i j}^{ \pm}(x, Q)
\end{aligned}
$$

- Easy to solve (just functions).

Singlet Sector

- Coupled pair of differential equation.
- Difficult to solve (2D matrices).

$$
\frac{\partial}{\partial \log Q^{2}}\binom{\Sigma(x, Q)}{g(x, Q)}=\left(\begin{array}{cc}
P_{q q} & P_{q g} \\
P_{g q} & P_{g g}
\end{array}\right) \otimes\binom{\Sigma(x, Q)}{g(x, Q)}
$$

DGLAP evolution overview

Various methods to solve them. Two main strategies:
Numeric approaches (mostly in x-space)
Analytic approaches (mostly in Mellin-space)

$$
f(N, Q)=\int_{0}^{1} d x x^{N-1} f(x, Q)
$$

Defining the Evolution Operator: $\left\{\begin{array}{l}\mathbf{q}_{S}(N, Q)=\mathbf{E}\left(N ; Q_{0}, Q\right) \mathbf{q}_{S}\left(N, Q_{0}\right) \\ q_{\mathrm{NS}}(N ; Q)=E_{\mathrm{NS}}\left(N ; Q_{0}, Q\right) q_{\mathrm{NS}}\left(N ; Q_{0}\right)\end{array}\right.$

$$
\begin{aligned}
& {\left[\begin{array} { l }
{ \frac { \partial } { \partial \operatorname { l o g } Q ^ { 2 } } \mathbf { E } (N ; Q _ { 0 } , Q) = \mathbf { P } ^ { (n) } (N , a _ { S } (Q)) \mathbf { E } (N ; Q _ { 0 } , Q) } \\
{ \mathbf { E } (N ; Q _ { 0 } , Q) = \mathbf { E x p a n d e d } \text { up to NnO } } \\
{ } \\
{ \text { Or equivalentlymapped to: } }
\end{array} \quad \left[\begin{array}{l}
\frac{\partial}{\partial a_{S}} \mathbf{E}\left(N ; a_{0}, a_{S}\right)=\mathbf{R}^{(n)}\left(N, a_{S}\right) \mathbf{E}\left(N ; a_{0}, a_{S}\right) \\
\mathbf{E}\left(N ; a_{0}, a_{0}\right)=\mathbf{1}
\end{array}\right.\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{R}^{(n)}\left(N, a_{S}\right)=-\frac{1}{a_{S}} \mathbf{R}_{0}(N)-\sum_{k=1}^{n} a_{S}^{k-1} \frac{1+\sum_{j=1}^{n-k} b_{j} a_{S}^{j}}{1+\sum_{j=1}^{n} b_{j} a_{S}^{j}} \mathbf{R}_{k}(N) \\
& \mathbf{R}_{k}=\frac{\mathbf{P}_{k}}{\beta_{0}}-\sum_{j=1}^{k} b_{j} \mathbf{R}_{k-j}
\end{aligned}
$$

Analytic solutions to DGLAP evolution

Once the perturbative order n for the splitting kernels \mathbf{P} has been fixed, solutions can be catalogued as:

Only achievable for Non-Singlet sector:

$$
\frac{\partial E_{\mathrm{NS}}}{\partial a_{S}}=R_{\mathrm{NS}}^{(n)} E_{\mathrm{NS}} \Longrightarrow E_{\mathrm{NS}}\left(N ; a_{0}, a_{S}\right)=\exp \left\{\int_{a_{0}}^{a_{S}} d a R_{\mathrm{NS}}^{(n)}(N ; a)\right\}
$$

Analytic solutions to DGLAP evolution

Once the perturbative order n for the splitting kernels \mathbf{P} has been fixed, solutions can be catalogued as:

Only achievable for Non-Singlet sector:

$$
\frac{\partial E_{\mathrm{NS}}}{\partial a_{S}}=R_{\mathrm{NS}}^{(n)} E_{\mathrm{NS}} \Longrightarrow E_{\mathrm{NS}}\left(N ; a_{0}, a_{S}\right)=\exp \left\{\int_{a_{0}}^{a_{S}} d a R_{\mathrm{NS}}^{(n)}(N ; a)\right\}
$$

For Singlet instead:

$$
\frac{\partial \mathbf{E}}{\partial a_{S}}=\mathbf{R}^{(n)} \mathbf{E} \Longrightarrow \mathbf{E}\left(N ; a_{0}, a_{S}\right)=\mathcal{T} \exp \left\{\int_{a_{0}}^{a_{S}} d a \mathbf{R}^{(n)}(N ; a)\right\}
$$

Particularly challenging due to its intrinsic matrix nature and the splitting kernels do not commute beyond LO:

$$
\left[\boldsymbol{R}_{k \geq 1}(N), \boldsymbol{R}_{0}(N)\right] \neq 0 \underset{\bigcirc}{\bigcirc}
$$

Analytic solutions for Singlet Sector

Once the perturbative order n for the splitting kernels \mathbf{P} has been fixed, solutions can be catalogued as:

- Closed
\square Exponentiated
vs
vs
vs

Approximated $\longleftarrow \frac{\partial \mathbf{E}^{\text {sol }}}{\partial a_{S}}-\mathbf{R}^{(n)} \mathbf{E}^{\text {sol }} \neq 0$

Iterated \longleftarrow Finite/Infinite number of operators
Expanded
(Product of) exponentialsvs $\mathrm{a}_{\mathrm{S}} / \mathrm{a}_{0}$ expansion
"The splitting function matrices \mathbf{P}_{k} of different orders k do generally not commute [...] This prevents, already at NLO, writing the solution of [Singlet Evolution] in a closed exponential form."
> J. Blumlein and A. Vogt, Phys. Rev. D 58, 014020 (1998)

Analytic solutions for Singlet Sector

Once the perturbative order n for the splitting kernels \mathbf{P} has been fixed, solutions can be catalogued as:

"The splitting function matrices \mathbf{P}_{k} of different orders k do generally not commute [...] This prevents, already at NLO, writing the solution of [Singlet Evolution] in a closed
> J. Blumlein and A. Vogt, Phys. Rev. D 58, 014020 (1998) exponential form."

Commonly, the solution is obtained through the U-matrices approach:
$\mathbf{E}\left(N ; a_{0}, a_{S}\right)=\mathbf{U}\left(N ; a_{S}\right) \exp \left(h_{1}\left(a_{0}, a_{S}\right) \mathbf{R}_{0}(N)\right) \mathbf{U}^{-1}\left(N ; a_{0}\right)$
$\mathbf{U}\left(N ; a_{S}\right)=1+\sum_{k=1}^{\infty} a_{S}^{k} \mathbf{U}_{k}(N)$
Obtained iteratively
> A. J. Buras, Rev. Mod. Phys. 52, 199 (1980)
$>$ W. Furmanski and R. Petronzio, Z. Phys. C 11, 293 (1982)

- $\sqrt{\text { - }}$ A benchmark over 40 years of QCD
$>$ J. Blumlein and A. Vogt, Phys. Rev. D 58, 014020 (1998)
$>$ A. Vogt, Comput. Phys. Commun. 170, 65 (2005)

Analytic solutions for Singlet Sector

Once the perturbative order n for the splitting kernels \mathbf{P} has been fixed, solutions can be catalogued as:

\square Closed
\square Exponentiated $\quad \begin{aligned} & \text { vs } \\ & \end{aligned}$
vs

Iterated \longleftarrow Finite/Infinite number of operators
Expanded
(Product of) exponentials vs $\mathrm{a}_{\mathrm{S}} / \mathrm{a}_{0}$ expansion
"The splitting function matrices \mathbf{P}_{k} of different orders k do generally not commute [...] This prevents, already at NIO, writing the solution of [Singlet Evolution] in a closed evponential form."

Here I present an ALTERNATIVE to the U-matrices approach which provides closed and exponentiated solutions beyond LO

Analytic Solutions of the DGLAP Evolution and Theoretical Uncertainties Andrea Simonelli (Jan 24, 2024)
e-Print: 2401.13663 [hep-ph]

How to deal with Non-Commutative Operators?

An analogous problem: time evolution of quantum systems $\quad \frac{\partial \widehat{U}(t)}{\partial t}=\widehat{H}(t) \widehat{U}(t), \quad \widehat{U}(0)=1$

Dyson time-ordered exponential (1949)
 F. J. Dyson, Phys. Rev. 75, 486 (1949)

$$
\widehat{U}(t)=\mathcal{T} \exp \left(\int_{0}^{t} d \tau \widehat{H}(\tau)\right)=1+\int_{0}^{t} d \tau \widehat{H}(\tau)+\frac{1}{2} \int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \widehat{H}\left(\tau_{1}\right) \widehat{H}\left(\tau_{2}\right)+\ldots
$$

- Exponentiation is implicit (defined by its expansion).
- Popular in QFT and particle physics (and hence QCD).
- Ultimately the foundation of the U-matrix approach, with some further assumptions.

Magnus Expansion (1954)
W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954).

$$
\begin{array}{ll}
\widehat{U}(t)=e^{\widehat{\Omega}(t)}, \quad \text { with } \widehat{\Omega}(t)=\sum_{k \geq 1} \widehat{\Omega}_{k}(t) & \widehat{\Omega}_{1}(t)=\int_{0}^{t} d \tau \widehat{H}(\tau) \\
O \quad \text { Exponentiation is explicit. } & \widehat{\Omega}_{2}(t)=\frac{1}{2} \int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2}\left[\widehat{H}\left(\tau_{1}\right), \widehat{H}\left(\tau_{2}\right)\right]
\end{array}
$$

- Many applications during the years, but never popularas the Dyson approach.
- The alternative presented here is based on this approach.

Sketch of the strategy

Suppose: $\widehat{H}(t)=\widehat{H}_{0}(t)+\varepsilon \widehat{H}_{1}(t)$, and set: $\widehat{S}_{k}(t)=\int_{0}^{t} d \tau H_{k}(\tau)$

1. Interaction Picture:

$$
\left[\begin{array}{l}
\frac{\partial \widehat{U}(t)}{\partial t}=\widehat{H}(t) \widehat{U}(t) \\
\widehat{U}(0)=1
\end{array}\right.
$$

$$
\widehat{U}(t)=\widehat{G}(t) \widehat{U}_{\text {int }}(t) \widehat{G}(0)^{-1}, \quad \text { with } \widehat{G}(t)=\exp \left(\int_{0}^{t} d \tau \widehat{H}_{0}(\tau)\right)
$$

$$
\Rightarrow \quad \frac{\partial \widehat{U}_{\mathrm{int}}(t)}{\partial t}=\varepsilon \widehat{H}_{\mathrm{int}}(t) \widehat{U}_{\mathrm{int}}(t), \quad \text { where } \widehat{H}_{\mathrm{int}}(t)=\exp \left(-\widehat{S}_{0}(t)\right) \widehat{H}_{1}(t) \exp \left(\widehat{S}_{0}(t)\right)
$$

$$
\widehat{U}(t)=\exp \left(\widehat{S}_{0}(t)\right) \exp \left(\varepsilon \widehat{S}_{1}(t)\right) \mathcal{T} \exp \left(\varepsilon \int_{0}^{t} d \tau e^{-\varepsilon \widehat{S}_{1}(\tau)}\left(\widehat{H}_{\mathrm{int}}(\tau)-\widehat{H}_{1}(\tau)\right) e^{\varepsilon \widehat{S}_{1}(\tau)}\right)
$$

Sketch of the strategy

Suppose: $\widehat{H}(t)=\widehat{H}_{0}(t)+\varepsilon \widehat{H}_{1}(t)$, and set: $\widehat{S}_{k}(t)=\int_{0}^{t} d \tau H_{k}(\tau)$

1. Interaction Picture:

$$
\left[\begin{array}{l}
\frac{\partial \widehat{U}(t)}{\partial t}=\widehat{H}(t) \widehat{U}(t) \\
\widehat{U}(0)=1
\end{array}\right.
$$

$$
\widehat{U}(t)=\widehat{G}(t) \widehat{U}_{\text {int }}(t) \widehat{G}(0)^{-1}, \quad \text { with } \widehat{G}(t)=\exp \left(\int_{0}^{t} d \tau \widehat{H}_{0}(\tau)\right)
$$

$$
\Rightarrow \quad \frac{\partial \widehat{U}_{\text {int }}(t)}{\partial t}=\varepsilon \widehat{H}_{\text {int }}(t) \widehat{U}_{\text {int }}(t), \quad \text { where } \widehat{H}_{\text {int }}(t)=\exp \left(-\widehat{S}_{0}(t)\right) \widehat{H}_{1}(t) \exp \left(\widehat{S}_{0}(t)\right)
$$

$$
\widehat{U}(t)=\exp \left(\widehat{S}_{0}(t)\right) \exp \left(\varepsilon \widehat{S}_{1}(t)\right) \mathcal{T}_{\exp \left(\varepsilon \int_{0}^{t} d \tau e^{-\varepsilon \widehat{S}_{1}(\tau)}\left(\widehat{H}_{\text {int }}(\tau)-\widehat{H}_{1}(\tau)\right) e^{\varepsilon \widehat{S}_{1}(\tau)}\right)}
$$

So far, just a shift
of the problem

Sketch of the strategy

Suppose: $\widehat{H}(t)=\widehat{H}_{0}(t)+\varepsilon \widehat{H}_{1}(t)$, and set: $\widehat{S}_{k}(t)=\int_{0}^{t} d \tau H_{k}(\tau)$

1. Interaction Picture:

$$
\left[\begin{array}{l}
\frac{\partial \mathbf{U}(t)}{\partial t}=\mathbf{H}(t) \mathbf{U}(t) \\
\mathbf{U}(0)=\mathbf{1}
\end{array}\right.
$$

$$
\widehat{U}(t)=\widehat{G}(t) \widehat{U}_{\text {int }}(t) \widehat{G}(0)^{-1}, \quad \text { with } \widehat{G}(t)=\exp \left(\int_{0}^{t} d \tau \widehat{H}_{0}(\tau)\right)
$$

$$
\Rightarrow \quad \frac{\partial \widehat{U}_{\text {int }}(t)}{\partial t}=\varepsilon \widehat{H}_{\text {int }}(t) \hat{U}_{\text {int }}(t), \quad \text { where } \widehat{H}_{\text {int }}(t)=\exp \left(-\widehat{S}_{0}(t)\right) \widehat{H}_{1}(t) \exp \left(\widehat{S}_{0}(t)\right)
$$

$$
\left.\widehat{U}(t)=\exp \left(\widehat{S}_{0}(t)\right) \exp \left(\varepsilon \widehat{S}_{1}(t)\right) \operatorname{Texp}^{\exp } \int_{0}^{t} d \tau e^{-\varepsilon \widehat{S}_{1}(\tau)}\left(\widehat{H}_{\text {int }}(\tau)-\widehat{H}_{1}(\tau)\right) e^{\varepsilon \widehat{S}_{1}(\tau)}\right) \quad \begin{aligned}
& \text { So far, just a shift } \\
& \text { of the problem }
\end{aligned}
$$

2. Huge simplifications in 2D:

$$
\mathbf{H}_{\mathrm{int}}(t)=\mathbf{H}_{1}(t)-\frac{\sinh \left(\Delta_{S_{0}}(t)\right)}{\Delta_{S_{0}}(t)}\left[\mathbf{S}_{0}(t), \mathbf{H}_{1}(t)\right]+\frac{\cosh \left(\Delta_{S_{0}}(t)\right)-1}{\Delta_{S_{0}}^{2}(t)}\left[\mathbf{S}_{0}(t),\left[\mathbf{S}_{0}(t), \mathbf{H}_{1}(t)\right]\right]
$$

Sketch of the strategy

Suppose: $\widehat{H}(t)=\widehat{H}_{0}(t)+\varepsilon \widehat{H}_{1}(t)$, and set: $\widehat{S}_{k}(t)=\int_{0}^{t} d \tau H_{k}(\tau)$

1. Interaction Picture:

$$
\left[\begin{array}{l}
\frac{\partial \mathbf{U}(t)}{\partial t}=\mathbf{H}(t) \mathbf{U}(t) \\
\mathbf{U}(0)=\mathbf{1}
\end{array}\right.
$$

$$
\widehat{U}(t)=\widehat{G}(t) \widehat{U}_{\text {int }}(t) \widehat{G}(0)^{-1}, \quad \text { with } \widehat{G}(t)=\exp \left(\int_{0}^{t} d \tau \widehat{H}_{0}(\tau)\right)
$$

$$
\Rightarrow \quad \frac{\partial \widehat{U}_{\mathrm{int}}(t)}{\partial t}=\varepsilon \widehat{H}_{\mathrm{int}}(t) \widehat{U}_{\mathrm{int}}(t), \quad \text { where } \widehat{H}_{\mathrm{int}}(t)=\exp \left(-\widehat{S}_{0}(t)\right) \widehat{H}_{1}(t) \exp \left(\widehat{S}_{0}(t)\right)
$$

$$
\widehat{U}(t)=\exp \left(\widehat{S}_{0}(t)\right) \exp \left(\varepsilon \widehat{S}_{1}(t)\right) \mathcal{T} \exp \left(\varepsilon \int_{0}^{t} d \tau e^{-\varepsilon \widehat{S}_{1}(\tau)}\left(\widehat{H}_{\mathrm{int}}(\tau)-\widehat{H}_{1}(\tau)\right) e^{\varepsilon \widehat{S}_{1}(\tau)}\right) \quad \begin{aligned}
& \text { So far, just a shift } \\
& \text { of the problem }
\end{aligned}
$$

2. Huge simplifications in 2D:

$$
\mathbf{H}_{\mathrm{int}}(t)=\mathbf{H}_{1}(t)-\frac{\sinh \left(\Delta_{S_{0}}(t)\right)}{\Delta_{S_{0}}(t)}\left[\mathbf{S}_{0}(t), \mathbf{H}_{1}(t)\right]+\frac{\cosh \left(\Delta_{S_{0}}(t)\right)-1}{\Delta_{S_{0}}^{2}(t)}\left[\mathbf{S}_{0}(t),\left[\mathbf{S}_{0}(t), \mathbf{H}_{1}(t)\right]\right]
$$

3. Magnus Expansion + Zassenhaus formula:

$$
\mathbf{U}^{\mathrm{appr}}(t)=\exp \left(\mathbf{S}_{0}(t)\right) \exp \left(\varepsilon \mathbf{S}_{1}(t)\right) \exp \left(\varepsilon \mathbf{T}_{1}(t)\right) \exp \left(\varepsilon \mathbf{T}_{2}(t)\right)
$$

$$
\begin{aligned}
& \mathbf{T}_{1}(t)=-\int_{0}^{t} d \tau \frac{\sinh \left(\Delta_{S_{0}}(\tau)\right)}{\Delta_{S_{0}}(\tau)}\left[\mathbf{S}_{0}(\tau), \mathbf{H}_{1}(\tau)\right] \\
& \mathbf{T}_{2}(t)=\int_{0}^{t} d \tau \frac{\cosh \left(\Delta_{S_{0}}(\tau)\right)-1}{\Delta_{S_{0}}(\tau)}\left[\mathbf{S}_{0}(\tau),\left[\mathbf{S}_{0}(\tau), \mathbf{H}_{1}(\tau)\right]\right]
\end{aligned}
$$

Closed and Exponentiated Solutions

- LO

$$
\mathbf{H}(t)=\mathbf{H}_{0}(t) \Longleftrightarrow \mathbf{U}^{\text {appr }}(t)=\exp \left(\mathbf{S}_{0}(t)\right) \quad 1 \text { Operator }
$$

$$
\left[\frac{\partial \mathbf{U}(t)}{\partial t}=\mathbf{H}(t) \mathbf{U}(t)\right.
$$

$$
\mathbf{U}(0)=\mathbf{1}
$$

- NLO

$$
\mathbf{H}(t)=\mathbf{H}_{0}(t)+\varepsilon \mathbf{H}_{1}(t) \Longrightarrow \mathbf{U}^{\text {appr }}(t)=\exp \left(\mathbf{S}_{0}(t)\right) \exp \left(\varepsilon \mathbf{S}_{1}(t)\right) \prod_{i=1}^{2} \exp \left(\varepsilon \mathbf{T}_{i}(t)\right) \text { 4 Operators }
$$

- NNLO

$$
\mathbf{H}(t)=\mathbf{H}_{0}(t)+\varepsilon \mathbf{H}_{1}(t)+\varepsilon^{2} \mathbf{H}_{2}(t) \Longrightarrow
$$

$$
\mathbf{U}^{\text {appr }}(t)=\exp \left(\mathbf{S}_{0}(t)\right) \exp \left(\varepsilon \mathbf{S}_{1}(t)\right) \prod_{i=1}^{2} \exp \left(\varepsilon \mathbf{T}_{i}(t)\right) \exp \left(\varepsilon^{2} \mathbf{S}_{2}(t)\right) \prod_{i=1}^{2} \exp \left(\varepsilon^{2} \mathbf{Q}_{i}(t)\right) \prod_{i} \exp \left(\frac{1}{2} \varepsilon^{2} \mathbf{W}_{i}(t)\right)
$$

- Etc...

Order by order it is possible to describe the evolution

Analytic Solution of DGLAP Evolution

1 Operator

$$
\left[\begin{array}{l}
\frac{\partial}{\partial a_{S}} \mathbf{E}\left(N ; a_{0}, a_{S}\right)=\mathbf{R}^{(n)}\left(N, a_{S}\right) \mathbf{E}\left(N ; a_{0}, a_{S}\right) \\
\mathbf{E}\left(N ; a_{0}, a_{0}\right)=\mathbf{1}
\end{array}\right.
$$

- LOWEST ORDER:
the "Hamiltonian" is: $\mathbf{H}\left(a_{S}\right)=-\frac{1}{a_{S}} \mathbf{R}_{0}(N)$

$$
\underline{\mathbf{E}}^{\mathrm{LO}}\left(N ; a_{0}, a_{S}\right)=\exp \left(h_{1}\left(a_{0}, a_{S}\right) \mathbf{R}_{0}(N)\right)
$$

$$
h_{1}\left(a_{0}, a_{S}\right)=-\log \left(\frac{a_{S}}{a_{0}}\right)
$$

Known since the dawn of QCD
$\boldsymbol{q}_{\mathrm{LO}}\left(N, a_{\mathrm{s}}, N\right)=\left(\frac{a_{\mathrm{s}}}{a_{0}}\right)^{-\boldsymbol{R}_{0}(N)} \boldsymbol{q}\left(N, a_{0}\right) \equiv \boldsymbol{L}\left(N, a_{\mathrm{s}}, a_{0}\right) \boldsymbol{q}\left(N, a_{0}\right) \quad>$ A. Vogt, Comput. Phys. Commun. 170, 65 (2005)
It is the only exact result for the Singlet Sector.

Analytic Solution of DGLAP Evolution

4 Operators

$$
\left[\begin{array}{l}
\frac{\partial}{\partial a_{S}} \mathbf{E}\left(N ; a_{0}, a_{S}\right)=\mathbf{R}^{(n)}\left(N, a_{S}\right) \mathbf{E}\left(N ; a_{0}, a_{S}\right) \\
\mathbf{E}\left(N ; a_{0}, a_{0}\right)=\mathbf{1}
\end{array}\right.
$$

○ NEXT-LOWESTORDER:
the "Hamiltonian" is: $\mathbf{H}\left(a_{S}\right)=-\frac{1}{a_{S}} \mathbf{R}_{0}(N)-\frac{1}{1+b_{1} a_{S}} \mathbf{R}_{1}(N)$

$$
\begin{aligned}
& \mathbf{E}^{\mathrm{NLO}}\left(N ; a_{0}, a_{S}\right)=\exp \left(h_{1}\left(a_{0}, a_{S}\right) \mathbf{R}_{0}(N)\right) \exp \left(h_{2}\left(a_{0}, a_{S}\right) \mathbf{R}_{1}(N)\right) \\
& \quad \times \exp \left(h_{3}\left(\Delta_{0}(N) ; a_{0}, a_{S}\right)\left[\mathbf{R}_{0}(N), \mathbf{R}_{1}(N)\right]\right) \exp \left(h_{4}\left(\Delta_{0}(N) ; a_{0}, a_{S}\right)\left[\mathbf{R}_{0}(N),\left[\mathbf{R}_{0}(N), \mathbf{R}_{1}(N)\right]\right]\right)
\end{aligned}
$$

$h_{1}\left(a_{0}, a_{S}\right)=-\log \left(\frac{a_{S}}{a_{0}}\right) ;$
$h_{2}\left(a_{0}, a_{S}\right)=-\frac{1}{b_{1}} \log \left(\frac{1+b_{1} a_{S}}{1+b_{1} a_{0}}\right) ;$
$F\left(\Delta ; a_{0}, a_{S}\right)=\left(\frac{a_{S}}{a_{0}}\right)^{\Delta} \frac{1}{1+\Delta}{ }_{2} F_{1}\left(1,1+\Delta ; 2+\Delta,-b_{1} a\right)$
$F_{+}\left(\Delta ; a_{0}, a_{S}\right)=F\left(\Delta ; a_{0}, a_{S}\right)+F\left(-\Delta ; a_{0}, a_{S}\right) ;$
$F_{-}\left(\Delta ; a_{0}, a_{S}\right)=F\left(\Delta ; a_{0}, a_{S}\right)-F\left(-\Delta ; a_{0}, a_{S}\right)$,
$h_{3}\left(\Delta ; a_{0}, a_{S}\right)=-\frac{1}{2 \Delta}\left(a_{S} F_{-}\left(\Delta ; a_{0}, a_{S}\right)-a_{0} F_{-}\left(\Delta ; a_{0}, a_{0}\right)\right) ;$
$h_{4}\left(\Delta ; a_{0}, a_{S}\right)=-\frac{1}{2 \Delta^{2}}\left(a_{S} F_{+}\left(\Delta ; a_{0}, a_{S}\right)-a_{0} F_{+}\left(\Delta ; a_{0}, a_{0}\right)+2 h_{2}\left(a_{0}, a_{S}\right)\right)$

Comparing approaches

Current available closed solution at NLO is the truncated solution from U-matrices approach:

$$
\mathbf{E}_{\text {tr. }}^{\mathrm{NLO}}\left(N ; a_{0}, a_{S}\right)=e^{h_{1}\left(a_{0}, a_{S}\right) \mathbf{R}_{0}(N)}+a_{S} \mathbf{U}_{1}(N) e^{h_{1}\left(a_{0}, a_{S}\right) \mathbf{R}_{0}(N)}-a_{0} e^{h_{1}\left(a_{0}, a_{S}\right) \mathbf{R}_{0}(N)} \mathbf{U}_{1}(N)
$$

VS

$$
\begin{aligned}
& \mathbf{E}^{\mathrm{NLO}}\left(N ; a_{0}, a_{S}\right)=\exp \left(h_{1}\left(a_{0}, a_{S}\right) \mathbf{R}_{0}(N)\right) \exp \left(h_{2}\left(a_{0}, a_{S}\right) \mathbf{R}_{1}(N)\right) \\
& \quad \times \exp \left(h_{3}\left(\Delta_{0}(N) ; a_{0}, a_{S}\right)\left[\mathbf{R}_{0}(N), \mathbf{R}_{1}(N)\right]\right) \exp \left(h_{4}\left(\Delta_{0}(N) ; a_{0}, a_{S}\right)\left[\mathbf{R}_{0}(N),\left[\mathbf{R}_{0}(N), \mathbf{R}_{1}(N)\right]\right]\right)
\end{aligned}
$$

Closed, but not exponentiated

Closed and exponentiated

- Analytic Solution
-_Truncated Solution
$\mathbf{q}_{S}^{\text {sol }}(x, Q)=\int \frac{d N}{2 \pi i} x^{-N} \mathbf{E}^{\text {sol }}\left(N ; a_{0}, a_{S}(Q)\right) \mathbf{q}_{S}\left(x, Q_{0}\right) \quad$ with: $\mathbf{q}_{S}=\binom{\Sigma}{g}$
Singlet PDF at input scale. A simple (proton) model is:
$u_{V}\left(N ; Q_{0}\right)=2 \frac{B\left(\alpha_{u}+N, \beta_{u}+1\right)}{B\left(\alpha_{u}+1, \beta_{u}+1\right)}$
$d_{V}\left(N ; Q_{0}\right)=\frac{B\left(\alpha_{d}+N, \beta_{d}+1\right)}{B\left(\alpha_{d}+1, \beta_{d}+1\right)}$
$g\left(N ; Q_{0}\right)=\gamma_{g} B\left(\alpha_{g}+N, \beta_{g}+1\right)$
$q_{\text {sea }}\left(N ; Q_{0}\right)=\gamma_{\text {sea }} B\left(\alpha_{\text {sea }}+N, \beta_{\text {sea }}+1\right) \quad$ with: $\gamma_{\text {sea }}=\frac{1-u_{V}\left(2 ; Q_{0}\right)-d_{V}\left(2 ; Q_{0}\right)-g\left(2, Q_{0}\right)}{6 B\left(\alpha_{\text {sea }}+2, \beta_{\text {sea }}+1\right)}$

Theoretical Uncertainties: how far from exact solution?

Defining the Violation Operator:

$$
\mathbf{V}^{\text {sol }}\left(N ; a_{0}, a_{S}(Q)\right)=\frac{\partial \mathbf{E}^{\mathrm{sol}}\left(N ; a_{0}, a_{S}(Q)\right)}{\partial \log Q^{2}}-\left(a_{S}(Q) \mathbf{P}_{0}(N)+a_{S}^{2}(Q) \mathbf{P}_{1}(N)\right) \mathbf{E}^{\mathrm{sol}}\left(N ; a_{0}, a_{S}(Q)\right)
$$

$$
\text { exact sol. } \Longrightarrow \mathbf{V}^{\text {sol }} \equiv 0
$$

The discrepancy from the exact solution can be determined as:

$$
\Delta \mathbf{q}_{S}^{\mathrm{sol}}(x, Q)=\int \frac{d N}{2 \pi i} x^{-N} \mathbf{V}^{\text {sol }}\left(N ; a_{0}, a_{S}(Q)\right) \mathbf{q}_{S}\left(x, Q_{0}\right) \quad \text { with: } \Delta \mathbf{q}_{S}=\binom{\Delta \Sigma}{\Delta g}
$$

The bigger is the size of $\Delta \mathbf{q}_{S}^{\text {sol }}(x, Q)$, the bigger are the theoretical errors

Theoretical Uncertainties: how far from exact solution?

The analytic solution is systematically more precise than the truncated solution!

The improvement is particularly evident at low energies (several orders of magnitude)
\Longrightarrow It might be relevant for TMD physics

Bonus: Consistent Log-counting and Improved Accuracy

$\frac{d}{d \log Q^{2}} a_{S}(Q)=\beta\left(a_{S}(Q)\right) \Longrightarrow a_{0} \Leftrightarrow a_{S}, L=\log \left(\frac{Q}{Q_{0}}\right) \quad$ The exponents can be ordered in descendent powers of L

$$
\begin{aligned}
& \mathbf{E}^{\mathrm{NLL}}\left(N ; Q_{0}, Q\right)=\exp \left(\left(\widetilde{f}_{1}(\lambda)+\frac{1}{L} \widetilde{f}_{2}^{(1)}(\lambda)\right) \mathbf{P}_{0}(N)\right) \exp \left(\frac{1}{L} \widetilde{f}_{2}^{(2)}(\lambda) \mathbf{P}_{1}(N)\right) \\
& \quad \times \exp \left(\frac{1}{L} \widetilde{f}_{3}\left(\frac{\widetilde{\Delta}_{0}(N)}{\beta_{0}}, \lambda\right)\left[\mathbf{P}_{0}(N), \mathbf{P}_{1}(N)\right]\right) \exp \left(\frac{1}{L} \widetilde{f}_{4}\left(\frac{\widetilde{\Delta}_{0}(N)}{\beta_{0}}, \lambda\right)\left[\mathbf{P}_{0}(N),\left[\mathbf{P}_{0}(N), \mathbf{P}_{1}(N)\right]\right]\right)
\end{aligned}
$$

$$
\lambda=2 a_{S} \beta_{0} L
$$

- Every ingredient is explicitly computed analytically
- Expansion is extremely transparent: all the neglected terms are assigned with a well-defined scaling
- Inevitably less precise then previous NLO analytic solution.

Conclusions

I presented an alternative approach to the usual strategy for solving the Singlet Sector of DGLAP evolution.
Within this framework, I obtained the first closed and exponentiated solution at NLO.

$$
\begin{aligned}
& \mathbf{E}^{\mathrm{NLO}}\left(N ; a_{0}, a_{S}\right)=\exp \left(h_{1}\left(a_{0}, a_{S}\right) \mathbf{R}_{0}(N)\right) \exp \left(h_{2}\left(a_{0}, a_{S}\right) \mathbf{R}_{1}(N)\right) \\
& \quad \times \exp \left(h_{3}\left(\Delta_{0}(N) ; a_{0}, a_{S}\right)\left[\mathbf{R}_{0}(N), \mathbf{R}_{1}(N)\right]\right) \exp \left(h_{4}\left(\Delta_{0}(N) ; a_{0}, a_{S}\right)\left[\mathbf{R}_{0}(N),\left[\mathbf{R}_{0}(N), \mathbf{R}_{1}(N)\right]\right]\right)
\end{aligned}
$$

\square This result is systematically more precise than its \mathbf{U}-matrices counterpart
Log-accuracy follows quite straightforwardly:

$$
\begin{aligned}
& \mathbf{E}^{\mathrm{NLL}}\left(N ; Q_{0}, Q\right)=\exp \left(\left(\widetilde{f}_{1}(\lambda)+\frac{1}{L} \widetilde{f}_{2}^{(1)}(\lambda)\right) \mathbf{P}_{0}(N)\right) \exp \left(\frac{1}{L} \widetilde{f}_{2}^{(2)}(\lambda) \mathbf{P}_{1}(N)\right) \\
& \quad \times \exp \left(\frac{1}{L} \widetilde{f}_{3}\left(\frac{\widetilde{\Delta}_{0}(N)}{\beta_{0}}, \lambda\right)\left[\mathbf{P}_{0}(N), \mathbf{P}_{1}(N)\right]\right) \exp \left(\frac{1}{L} \widetilde{f}_{4}\left(\frac{\widetilde{\Delta}_{0}(N)}{\beta_{0}}, \lambda\right)\left[\mathbf{P}_{0}(N),\left[\mathbf{P}_{0}(N), \mathbf{P}_{1}(N)\right]\right]\right)
\end{aligned}
$$

Future Perspectives

$>$ Extension to NNLO (and beyond)
$>$ Application to QCD + QED
> Compare performance with iterated solutions from \mathbf{U}-matrices approach
> PDF phenomenology
$>$ TMD implementation and global fitting

Back-up slides

Detailed comparison with U-matrices approach

$$
\begin{aligned}
& \mathbf{E}\left(N ; a_{0}, a_{S}\right)=\mathbf{U}\left(N ; a_{S}\right) \exp \left(h_{1}\left(a_{0}, a_{S}\right) \mathbf{R}_{0}(N)\right) \mathbf{U}^{-1}\left(N ; a_{0}\right) \\
& \mathbf{U}_{k}=-\frac{1}{k}\left(\mathbf{e}_{-} \widetilde{\mathbf{R}}_{k} \mathbf{e}_{-}+\mathbf{e}_{+} \widetilde{\mathbf{R}}_{k} \mathbf{e}_{+}\right)+\frac{\mathbf{e}_{+} \widetilde{\mathbf{R}}_{k} \mathbf{e}_{-}}{\Delta_{0}-k}-\frac{\mathbf{e}_{-} \widetilde{\mathbf{R}}_{k} \mathbf{e}_{+}}{\Delta_{0}+k}
\end{aligned}
$$

- Iterated (x-space integration) $\quad \mathbf{R}_{k}^{\mathrm{NLO}}=\left(-b_{1}\right)^{k-1} \mathbf{R}_{1}$

$$
\begin{aligned}
& \mathbf{e}_{-} \mathbf{U}\left(N ; a_{S}\right) \mathbf{e}_{+}=\mathbf{e}_{-} \mathbf{R}_{1}\left[-\frac{\log \left(1+b_{1} a_{S}\right)}{b_{1}}-\frac{a_{S}}{1+\Delta_{0}}{ }_{2} F_{1}\left(1,1+\Delta_{0} ; 2+\Delta_{0} ;-b_{1} a_{S}\right)-\right. \\
& \left.\quad-\sum_{i=1}^{\infty} a_{S}^{1+i}\left(\frac{{ }_{2} F_{1}\left(1,1+i ; 2+i ;-b_{1} a_{S}\right)}{1+i}+\frac{{ }_{2} F_{1}\left(1,1+i+\Delta_{0} ; 2+i+\Delta_{0} ;-b_{1} a_{S}\right)}{1+i+\Delta_{0}}\right) \mathbf{U}_{i}\right] \mathbf{e}_{+}
\end{aligned}
$$

Iterative counterpart of the closed exponentiated solution!

- Iterated $\mathbf{R}_{k \geq 2}^{\mathrm{NLO}}=0$

$$
\mathbf{e}_{-} \mathbf{U}\left(N ; a_{S}\right) \mathbf{e}_{+}=\mathbf{e}_{-} \mathbf{R}_{1}\left[-a_{S}\left(1+\frac{1}{\Delta_{0}+1}\right)-\sum_{k \geq 2} a_{S}^{k}\left(\frac{1}{k}+\frac{1}{\Delta_{0}+k}\right) \mathbf{U}_{k-1}\right] \mathbf{e}_{+}
$$

- Truncated

NNLO Operators

$$
\left.\left.\begin{array}{l}
\mathbf{S}_{2}(t)=\int_{0}^{t} d \tau \mathbf{H}_{2}(t), \\
\mathbf{Q}_{1}(t)=-\int_{0}^{t} d \tau \frac{\sinh \left(\Delta_{S_{0}}(\tau)\right)}{\Delta_{S_{0}}(\tau)}\left[\mathbf{S}_{0}(\tau), \mathbf{H}_{2}(\tau)\right], \\
\mathbf{Q}_{2}(t)=\int_{0}^{t} d \tau \frac{\cosh \left(\Delta_{S_{0}}(\tau)\right)-1}{\Delta_{S_{0}}^{2}(\tau)}\left[\mathbf{S}_{0}(\tau),\left[\mathbf{S}_{0}(\tau), \mathbf{H}_{2}(\tau)\right]\right], \\
\mathbf{W}_{1}(t)=\int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2}\left[\mathbf{H}_{1}\left(\tau_{1}\right), \mathbf{H}_{1}\left(\tau_{2}\right)\right], \\
\mathbf{W}_{1}^{\prime}(t)=-\left(\int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2}-\int_{0}^{t} d \tau_{2} \int_{0}^{\tau_{2}} d \tau_{1}\right) \frac{\sinh \Delta_{S_{0}}\left(\tau_{1}\right)}{\Delta_{S_{0}}\left(\tau_{1}\right)}\left[\mathbf{H}_{1}\left(\tau_{1}\right),\left[\mathbf{S}_{0}\left(\tau_{2}\right), \mathbf{H}_{1}\left(\tau_{2}\right)\right]\right], \\
\mathbf{W}_{1}^{\prime \prime}(t)=\left(\int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2}-\int_{0}^{t} d \tau_{2} \int_{0}^{\tau_{2}} d \tau_{1}\right) \frac{\cosh \Delta_{S_{0}}\left(\tau_{1}\right)-1}{\Delta_{S_{0}}^{2}\left(\tau_{1}\right)}\left[\mathbf{H}_{1}\left(\tau_{1}\right),\left[\mathbf{S}_{0}\left(\tau_{2}\right),\left[\mathbf{S}_{0}\left(\tau_{2}\right), \mathbf{H}_{1}\left(\tau_{2}\right)\right]\right]\right], \\
\mathbf{W}_{2}(t)=\int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \frac{\sinh \Delta_{S_{0}}\left(\tau_{1}\right)}{\Delta_{S_{0}}\left(\tau_{1}\right)} \frac{\sinh \Delta_{S_{0}}\left(\tau_{2}\right)}{\Delta_{S_{0}}\left(\tau_{2}\right)}\left[\left[\mathbf{S}_{0}\left(\tau_{1}\right), \mathbf{H}_{1}\left(\tau_{1}\right)\right],\left[\mathbf{S}_{0}\left(\tau_{2}\right), \mathbf{H}_{1}\left(\tau_{2}\right)\right]\right] \\
\mathbf{W}_{2}^{\prime}(t) \\
\quad \times-\left(\int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2}-\int_{0}^{t} d \tau_{2} \int_{0}^{\tau_{2}} d \tau_{1}\right) \frac{\sinh \Delta_{S_{0}}\left(\tau_{1}\right)}{\Delta_{S_{0}}\left(\tau_{1}\right)} \frac{\cosh \Delta_{S_{0}}\left(\tau_{2}\right)-1}{\Delta_{S_{0}}\left(\tau_{2}\right)} \\
\left.\quad \times\left[\left[\mathbf{S}_{0}\left(\tau_{1}\right), \mathbf{H}_{1}\left(\tau_{1}\right)\right],\left[\mathbf{S}_{0}\left(\tau_{2}\right),\left[\mathbf{S}_{0}\left(\tau_{2}\right), \mathbf{H}_{1}\left(\tau_{2}\right)\right]\right]\right]\right] \\
\mathbf{W}_{3}(t)
\end{array}\right)=\int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \frac{\cosh \Delta_{S_{0}}\left(\tau_{1}\right)-1}{\Delta_{S_{0}}\left(\tau_{1}\right)} \frac{\cosh \Delta_{S_{0}}\left(\tau_{2}\right)-1}{\Delta_{S_{0}}\left(\tau_{2}\right)}\left[\left[\mathbf{S}_{0}\left(\tau_{1}\right),\left[\mathbf{S}_{0}\left(\tau_{1}\right), \mathbf{H}_{1}\left(\tau_{1}\right)\right]\right],\left[\mathbf{S}_{0}\left(\tau_{2}\right),\left[\mathbf{S}_{0}\left(\tau_{2}\right), \mathbf{H}_{1}\left(\tau_{2}\right)\right]\right]\right]\right] .
$$

NLL Functions

$$
\begin{aligned}
& f_{1}(\lambda)=-\log (1-\lambda) ; \\
& f_{2}^{(1)}(\lambda)=-\frac{1}{2 \beta_{0}} \frac{\beta_{1}}{\beta_{0}} \frac{\lambda}{1-\lambda} \log (1-\lambda) ; \\
& f_{2}^{(2)}(\lambda)=\frac{1}{2 \beta_{0}} \frac{\lambda^{2}}{1-\lambda} ; \\
& f_{3}(\Delta, \lambda)=-\frac{1}{4 \beta_{0}} \lambda\left(\frac{2}{\left(1-\Delta^{2}\right)} \frac{1}{1-\lambda}+\frac{1}{\Delta}\left(\frac{(1-\lambda)^{\Delta}}{1+\Delta}-\frac{(1-\lambda)^{-\Delta}}{1-\Delta}\right)\right) ; \\
& f_{4}(\Delta, \lambda)=-\frac{1}{4 \beta_{0}} \frac{\lambda}{1-\lambda} \frac{1}{\Delta^{2}}\left(-\frac{2\left(1-\left(1-\Delta^{2}\right) \lambda\right)}{1-\Delta^{2}}+\frac{(1-\lambda)^{\Delta}}{1+\Delta}+\frac{(1-\lambda)^{-\Delta}}{1-\Delta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \widetilde{f}_{1}(\lambda)=\frac{1}{\beta_{0}} f_{1}(\lambda) ; \\
& \widetilde{f}_{2}^{(1)}(\lambda)=\frac{1}{\beta_{0}}\left(f_{2}^{(1)}(\lambda)-b_{1} f_{2}^{(2)}(\lambda)\right) ; \\
& \widetilde{f}_{2}^{(2)}(\lambda)=\frac{1}{\beta_{0}} f_{2}^{(2)}(\lambda) ; \\
& \widetilde{f}_{3}(\Delta, \lambda)=\frac{1}{\beta_{0}^{2}} f_{3}(\Delta, \lambda) ; \\
& \widetilde{f_{4}}(\Delta, \lambda)=\frac{1}{\beta_{0}^{3}} f_{4}(\Delta, \lambda) .
\end{aligned}
$$

