Phenomenological implications of modern PDF determinations

Juan M. Cruz Martínez CERN TH Department

DIS2024 - Grenoble April 2024

Why do we care about PDFs?

• The LHC is a Standard Model precision machine, and PDFs are a key ingredient in this. Increasingly a limiting factor:

	LO	NLO	NNLO	aN ³ LO
$\chi^2_{N_{pts}}$	2.57	1.33	1.17	1.14

Pavel's talk earlier today

- Multiple preliminary NNLO fits with LHC Run-2 (di)jet, vector boson, PPdata based on the selections of experiments recommended in 2305.10733, 2307.11153
- Work on implementation of N3LO contributions 2.
- Next-generation PDF uncertainty quantification: Bézier curves, META

Getting more accurate and precise over time

slowly but surely

LHCb Z→µµ

- PDF4LHC15:
- NNPDF30
- MMHT2014
- **CT14**

PDF4LHC21

- NNPDF31
- MSHT20
- **CT18**

NNPDF40:

(released around the time of PDF4LHC21, more data included, such as: the distribution shown)

and over orders...

This dataset was of course included in the fit... let's look at something more recent

With the NNPDF40 version of the corresponding order:

- -NNPDF40_nnlo_as_01180
- -NNPDF40_nlo_as_01180
- -NNPDF40_lo_as_01180

Accurate and trustworthy theory predictions are an essential ingredient of any PDF fit.

What's the phenomenological impact of the choice of PDF?

2403.12902

Measurement of vector boson production cross section and their ratios at $\sqrt{s} = 13.6$ with the ATLAS detector

PDF4LHC21 combination - hep-ph/2203.05506

Do the NNPDF4.0 uncertainties have a sizeable effect when comparing against data not included in the determination? Relative uncertainty for gq-luminosity

We will systematically study the impact of the PDF choice in the agreement between theory and data for datasets not included in the NNPDF4.0 analysis.

Process/Data set

DIS+jets (HERA) ZEUS, $\mathcal{L} = 38.6 \text{ pb}^{-1}$, $E_p = 820 \text{ GeV}$; high Q ZEUS, $\mathcal{L} = 81.7 \text{ pb}^{-1}$, $E_p = 920 \text{ GeV}$; high Q ZEUS, $\mathcal{L} = 374 \text{ pb}^{-1}$, $E_p = 920 \text{ GeV}$; high QH1, $\mathcal{L} = 290 \text{ pb}^{-1}$, $E_p = 920 \text{ GeV}$; low Q H1, $\mathcal{L} = 351 \text{ pb}^{-1}$, $E_p = 920 \text{ GeV}$; high Q

Inclusive jet and dijet production (LHC) ATLAS, $\mathcal{L} = 3.2 \text{ fb}^{-1}$; CMS, $\mathcal{L} = 36.3 \text{ fb}^{-1}$;

Top pair production (LHC) ATLAS, $\mathcal{L} = 36$ fb⁻¹, 1D and 2D diff. distr., ℓ +jets ATLAS, $\mathcal{L} = 36$ fb⁻¹, 1D and 2D diff. distr., all had CMS, $\mathcal{L} = 137$ fb⁻¹, 1D and 2D diff. distr., ℓ +jets

7

Some general notes:

- 1. All results are NNLO (no k-factor approximation). The program used in each case are mentioned in the corresponding slides.
- 2. Baseline NNPDF4.0 (no MHOU or N3LO corrections)
- Comparisons are shown for NNPDF4.0 and PDF4LHC21 to avoid cluttering the plots. More 3. information (comparisons to other sets) in the backup
- 4. The plot include: absolute comparison, normalized and the size of the PDF (solid) and dashed (theory) uncertainties compared to the data uncertainty. The shaded band includes theory and PDF uncertainties added in quadrature
- 5. The computation of the χ^2/N is always shown considering as uncertainties either (exp + theory) or (exp + theory + pdf) and over the entire dataset / hepdata entry.

PineAPPL

JHEP 12 (2020) 108 - 2008.12789 [hep-ph] <u>https://nnpdf.github.io/pineappl/</u>

Ploughshare

for all your interpolation grid needs

Ploughshare allows users from the HEP community to share fast interpolation grids in a standardised way PDF fitters and those from the experimental collaborations are able to upload their validated grids and access the grids of others quickly and with minimal fuss

https://ploughshare.web.cern.ch/ploughshare/

Munich -- the MUlti-channel Integrator at swiss (CH) precision --
Automates qT-subtraction and Resummation to Integrate X-sections
$$\begin{vmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

As usual, all code, data, etc will be available at https://nnpdf.mi.infn.it/ nnpdf-open-source-code/

CMS TTB

CMS 13 TeV top quark pair I+j channel: $\frac{1}{\sigma} \frac{d\sigma}{dpT_t}$

Atlas 1jet

Inclusive jet cross-sections at $\sqrt{s} = 13$ TeV. Dataset with 3.2fb-1 2015. Leading color NNLO correction

Predictions: NNLOJET (plougshare) Hepdata: 10.17182/hepdata.79952

χ^2/N	Only exp. and th. unc.	All uncertainties
PDF4LHC21	4.62	3.93
NNPDF40	4.78	4.59

Atlas 1jet

We find a score of Z = 16.87, which points to instabilities in the covariance matrix. Indeed, when we regularize with the recipe from EPJ C82 (2022) 956 the χ^2 looks a bit better.

χ^2/N	Only exp. and th. unc.	All uncertainties	Theor
PDF4LHC21	1.88	1.58	Ities
NNPDF40	1.83	1.74	Uncertair

PDF4LHC21	4.76	2.85
NNPDF40	3.81	3.23

Let's not forget where we are...

Note: The DIS + j data from HERA is not included in the NNPDF fits (although its possible impact was already assessed in the release paper of 4.0 hep-ph/2109.02653)

... because we don't always have 2 protons

H1 dijet Data taken from 2003 to 2007, integrated luminosity of 25 by 100

Predictions: NNLOJET (plougshare) Hepdata: 10.17182/hepdata.64353

8 to 200 osity o	7, of ² 0	dq²dpT	10-	
blougshar	e)		10 ⁰ -	
.ta.64353			1.2 -	
nd uncei	All rtainties	Theory/Data	1.0 -	
			0.8 -	

χ^2/N	Only exp. and th. unc.	All uncertainties	Theo	
			0.8 -	
PDF4LHC21	1.50	1.49	1.2 -	
NNPDF40	1.54	1.50	Uncertainties	
			0.8 -	

Zeu	s 1jet		10 ¹	-
Inclusive section, in	jet differential tegrated lumin	cross osity of	² ² ² θ ² θ ²	
82pb-1			10-1	
Predictions Hepdata: 10	: NNLOJET (plou).17182/hepdata.4	ıgshare) 15641	1.2	-
χ^2/N	Only exp. and	All	Theory/Data	-
			3	1
			0.8	
PDF4LHC21	0.819	0.817	0.8 - 1.2 -	
PDF4LHC21 NNPDF40	0.819	0.817 0.813	- 0.8 · 1.2	

E_T (GeV)

Conclusions:

In this talk we have seen several examples by comparing NNPDF4.0 to PDF4LHC21 (as a proxy for NNPDF3.1, CT18, MSHT20) and the following trends emerge:

- χ^2/N is similar to that of PDF4LHC21.
- of N3LO PDFs is starting now!

- While PDF uncertainties are smaller, the data-theory description in terms of

- When comparing to data not included in the fit, predictions for NNPDF4.0 seem to fall close the data -> hinting that the improvement in precision (smaller uncertainties than 3.1) came with an improvement in accuracy

- Oscillations far from the data can have big scale uncertainties, luckily the era

and special thanks to:

PineAPPL

Ploughshare allows users from the HEP community to share fast interpolation grids in a standardised way PDF fitters and those from the experimental collaborations are able to upload their validated grids and access the grids of others quickly and with minimal fuss

Thanks

Munich -- the MUlti-chaNnel Integrator at swiss (CH) precision --Automates qT-subtraction and Resummation to Integrate X-sections

Backup

Uncertainty comparison - gq

Uncertainty comparison - gg

Uncertainty comparison - qqbar

More datasets under consideration

 $Z p_T$ and Z+jet ATLAS, $\mathcal{L} = 36 \text{ pb}^{-1}$, normalised cross section ATLAS, differential cross sections ($\mathcal{L} = 139 \text{ fb}^{-1}$) CMS, differential cross sections ($\mathcal{L} = 36 \text{ fb}^{-1}$)

Drell Yan ATLAS $W, Z \sqrt{s} = 2.76$ TeV cross sections and asymmetries ATLAS W, $Z \sqrt{s} = 5$ TeV differential cross sections CMS $Z \sqrt{s} = 13$ TeV differential cross sections ($\mathcal{L} = 2.3$ fb⁻¹) CMS $Z \sqrt{s} = 13$ TeV $A_{\rm FB}$ ($\mathcal{L} = 139$ fb⁻¹) LHCb $Z \sqrt{s} = 13$ TeV forward Z production ($\mathcal{L} = 5$ fb⁻¹)

W + cATLAS $\sqrt{s} = 13$ TeV differential cross sections ($\mathcal{L} = 139$ fb⁻¹) CMS $\sqrt{s} = 8$ TeV differential cross sections ($\mathcal{L} = 18.4$ fb⁻¹)

Prompt photon ATLAS $\sqrt{s} = 13$ TeV differential cross sections ($\mathcal{L} = 139$ fb⁻¹) CMS $\sqrt{s} = 13$ TeV differential cross sections ($\mathcal{L} = 2.3$ fb⁻¹)

Double Gauge boson production ATLAS WW $\sqrt{s} = 13$ TeV diff. cross sections ($\mathcal{L} = 2.3$ fb⁻¹)

- We want to perform a systematic theory-data comparison for datasets that were not included in the determination of NNPDF4.0.
 - We are particularly interested in the phenomenological impact:
 - Is the prediction of the PDFs compatible with the experimental measurements?
 - How is the agreement with the data once theory uncertainties are included in the prediction: PDF, scale variations

Global NNLO PDFs

Some differences between the global NNLO PDF groups included in PDF4LHC21

- CT18 [hep-ph] 1912.10053
 - -> perturbative charm, hessian, tolerance
- [hep-ph] 2012.04684 - MSHT20
 - -> perturbative charm, hessian, dynamic tolerance
- NNPDF4.0 [hep-ph] 2109.02653
 - -> fitted (intrinsic) charm, monte carlo

region" ends at around x~0.5

aiming for both accuracy & precision

A precise determination of the strong-coupling from the recoil of Z bosons with the ATLAS experiment at $\sqrt{s}=8~{\rm TeV}$

arXiv:2309.12986

PDF set	$\alpha_{\rm s}(m_Z)$	PDF uncertainty
MSHT20 [37]	0.11839	0.00040
NNPDF4.0 [84]	0.11779	0.00024
CT18A [29]	0.11982	0.00050
HERAPDF2.0 $[65]$	0.11890	0.00027

 Δ_{PDF} (MSHT20 only) = 0.34 % Δ_{PDF} (NNPDF4.0 - CT18A) = 1.6 %

 $\sqrt{s} = 7$ TeV pp Collisions with the ATLAS Detector

ATLAS-CONF-2023-004

More PDF sets: ATLAS 1jet

More PDF sets: ATLAS TTB

ATLAS 13 TeV top quark pair in hadronic channel: $\frac{1}{\sigma} \frac{d\sigma}{d|y_{t\bar{t}}|}$

