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• Experimental (from the data)
• Theoretical (missing higher order for theory predictions, …)
• Input SM parameters
• Methodological

Uncertainties in PDF determinations
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Figure 3.2. Diagrammatic representation of the calculation of the �
2 in the NNPDF fitting framework as a function

of the values of {x
(k)
n } for the di↵erent datasets. Each block indicates an independent component.

3.2.3 Optimization strategy

Previous NNPDF determinations used stochastic algorithms for the training of neural networks, and in
particular in NNPDF3.1 nodal genetic algorithms were used. Stochastic minimization algorithms are less
prone to end up trapped in local minima, but are generally less e�cient than deterministic minimization
techniques, such as backpropagation combined with stochastic gradient descent (SGD). In the approach
adopted here [11], the optimizer is just another modular component of the code, to be chosen through a
hyperoptimization as we discuss shortly. The algorithms that we consider are SGD algorithms implemented
in the Tensorflow [193] package. Restricting to gradient descent algorithms ensures greater e�ciency,
while the use of hyperoptimization guarantees against the risk of missing the true minimum or overfitting.
The TensorFlow library provides automated di↵erentiation capabilities, which enables the use of arbitrarily
complex network architectures without having to provide analytical expressions for their gradients. However,
the whole convolution between input PDFs and FK-tables, indicated in Fig. 3.2 between brackets, needs to be
provided to the optimization library in order to use gradient based algorithms. The specific SGD optimizer
and its settings are determined via the hyperoptimization procedure described in Sect. 3.3. In comparison to
the genetic algorithms used in previous NNPDF releases, the hyperoptimized SGD-based optimizers improve
both replica stability and computational e�ciency, as we demonstrate in Sect. 3.4 below.

3.2.4 Stopping criterion and post-fit selection

As in previous NNPDF releases, a cross-validation method is used in order to avoid overfitting, which
could lead the neural networks to learn noise (such as statistical fluctuations) in the data, rather than the
underlying law. This is done through the patience algorithm shown diagrammatically in Fig. 3.3. This
algorithm is based on the look-back cross-validation stopping method [14], whereby the optimal length of
the fit is determined by the absolute minimum of �

2
val evaluated over a su�ciently large number of iterations

of the minimizer. Specifically, the stopping algorithm keeps track of the training step with the lowest �
2
val,

and as soon as this value does not improve for a given number of steps (set equal to a percentage of the
maximum number of training epochs), the fit is finalized.

There are three main di↵erences between the stopping criterion used in NNPDF4.0 and that of its
predecessor used for NNPDF3.1. First, the patience parameter is hyperoptimized, while previously it was
set to be infinity, i.e., the values of �

2
val were monitored until the maximum number of iterations was

reached. Second, the percentage of data that enters the training set has been increased to 75% for all
datasets. This is motivated by the observation that the current dataset is so wide that even with just 25%
validation overlearning does not occur in practice. In fact, even with the previous NNPDF3.0 dataset it
was observed in the framework of closure testing in Ref. [14] that larger training fractions lead to essentially
equivalent results. The faithfulness of results found with this training fraction will be confirmed by closure
test studies in Sect. 6 below. Third, the stopping algorithm now also tracks the positivity requirement
so that a fit cannot stop if the positivity condition is not satisfied. Instead in NNPDF3.1 replicas which
were not fulfilling positivity could be generated and had to be discarded a posteriori. This is now done by
verifying that the penalty term of Eq. (3.10) remains below the threshold value 10�6 (numerically zero).

Once the optimal stopping point for a given fit has been identified, the same post-fit quality checks that
were imposed in NNPDF3.1 are still enforced. Specifically, we remove replicas with too large �

2 values or
with too large arc-lengths: in both cases, defined as replicas outside the 4� interval of their distribution. The
post-fit selection algorithm also removes replicas that do not satisfy either the positivity or the integrability
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PDFs are parametrised at some initial 
scale . Sum rules are 
imposed with suitable normalisation

Q0 = 1.65 GeV

Build theory predictions for 
observables entering the fit

Use data to build   and 
minimise

χ2

Parametric regression



p (f |D) =
p(D | f )p (f)

p (D)

Introduce probability distribution 
on a space of functions

Build a suitable prior

Use Bayes’ theorem

Bayesian approach

Posterior of model given the data

Prior on the model

• Start from a prior on the model 
• Look at the data 
• Get the posterior  

p (f)
p (f |D)



   f =
f(x1)

⋮
f(xN)

∈ ℝN

m (xi; θ) = E (f (xi))
k (xi, xj; θ) = cov (f (xi), f (xj))

Parameters : stochastic variables representing values of the 
PDF on a grid of points

f

Gaussian Processes

Kernel  and mean function : functions 
modelling the correlation between parameters

K m

Hyperparameters : set of parameters entering the definition 
of the kernel (they control some specific feature of the prior)

θ

Joint probability distribution of  and  : target of the analysisf θ p (f, θ |data)



Some examples of application of 
GPs in physics

What about PDFs?



Prior for PDF 

k̃ (x, y) = xαyα σ2
2l (x) l (y)

l2 (x) + l2 (y)
exp − (x − y)2

l2 (x) + l2 (y)
with l(x) = (x + ϵ) × l0

Gibbs Kernel

3 hyperparameters controlling different features of 
the prior: α , l0 , σ



Example:  from BCDMSu+ − d+

𝒪 = Fp
2 − Fd

2 = C ⊗ f f = u+ − d+

𝒪i = ∑
α

(FK)iα f (xα) = FK fIntroduce an interpolation basis for f



Gaussian inference

f f* K (x, y; θ)Gaussian variable 
representing PDF on 
interpolation points x

𝒪 = FK f
Gaussian variable 

representing PDF on any 
set of points x*

Function modelling 
correlation

Data and 
corresponding 

experimental error

y, ϵ ∼ N(0,Cy)

( f*
FK f) ∼ 𝒩 0 , ( Kx*x* Kx*x FKT

FK Kxx* FK Kxx FKT)

p (f* |FK f + ϵ = y, θ)
This is a gaussian 

distribution. Its mean and 
covariance can be 

computed analytically



p (f*, θ |data) = p (f* |θ, data) p (θ |data)
Joint probability distribution 
of  and f* θ

Posterior on the 
hyperparamters  given 
the data

∝ p (data |θ) pθ (θ)

                          
We can sample from  running a MCMC algorithmp (θ |data)

Inference on the hyperparameters



Workflow

For DIS this step is 
analytical

Inference on hyperparameters

Build the prior as a function
of hyperparameters:

• Choose kernel

• Encode theory constraints 

Inference on parameters

Collect data and FK tables



Posterior for hyperparameters



uncertainty due to hyperparameter selection is incorporated into the final PDF uncertainty

Samples from p (f*, θ |data)



Towards a full DIS fit

- 9 flavours
- Extended set of DIS data
- Same formalism and simplifications apply
- Kinetic limit  
- Momentum and valence sumrules

f(1) = 0

Table from 
Eur.Phys.J.C 82 (2022) 
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What changes in a global fit?

p (f, θ |data) = p (f |data, θ) p (θ |data)
This bit is not a gaussian 
distribution any longer

To access the posterior we have 
to run a MCMC having dimension 

  dim f + dim θ

- Provide a DIS only PDF fit 

- Study dependence on the kernel  

- Compare with existing methodology. Are there differences? 

TO DO :



What changes in a global fit?

p (f, θ |data) = p (f |data, θ) p (θ |data)
This bit is not a gaussian 
distribution any longer

To access the posterior we have 
to run a MCMC having dimension 

  dim f + dim θ

- Provide a DIS only PDF fit 

- Study dependence on the kernel  

- Compare with existing methodology. Are there differences? 

TO DO :

Thanks!



Backup slides



k (x, y) = σ2 exp − (x − y)2

l2 Exponential quadratic

An example of a bad prior for PDFs



Fit quality

S
dof

=
1

Ndata ((m − m̃)TK−1
xx (m − m̃) + (y − FK m̃)TC−1

Y (y − FK m̃))

ℛ̃*2 =
1

dim(y* |y)
(FK* m̃ − y*)T(FK* K̃xxFK*T + C*Y )

+
(FK* m̃ − y*)

Generalisation on unseen data



Gaussian inference

f f* K (x, y; θ)Gaussian variable 
representing PDF on 
interpolation points x

𝒪 = FK f
Gaussian variable 

representing PDF on any 
set of points x*

Function modelling 
correlation

Data and 
corresponding 

experimental error

y, ϵ ∼ N(0,Cy)

( f*
FK f + ϵ) ∼ 𝒩 0 , (

Kx*x* Kx*x FKT

FK Kxx* FK Kxx FKT + Cy)

p (f* |FK f + ϵ = y, θ)

m̃* = m + Kx*xFKT (FK KxxFKT + Cy)
+

(y − m)

K̃* = Kx*x* − Kx*xFKT (FK KxxFKT + Cy)
+

FK Kxx*

inference of the gaussian parameters  can be done 
analytically

f*



Further possible applications

- simultaneous fits of PDFs and Wilson coefficients

σeft (c/Λ2) = σSM + ∑
i

σ̃ LO/NLO
i

ci

Λ2
+ ∑

i,j

σ̃ LO/NLO
ij

ci cj

Λ4

- Inverse problems relevant for the lattice community 

Phys.Rev.D 105 (2022) 3

JHEP 05 (2023) 205



K̃ = (I − Rxx) Kxx (I − Rxx)T + aT
xxCyaxx

Methodology Experimental error 

aT
xx = KxxFKT (FK KxxFKT + Cy)

+

Rxx = aT
xx FK

Decomposition of PDF uncertainty


