Bayesian inference and gaussian processes for PDF determination

Tommaso Giani

In collaboration with A. Candido, L.Del Debbio and G.Petrillo

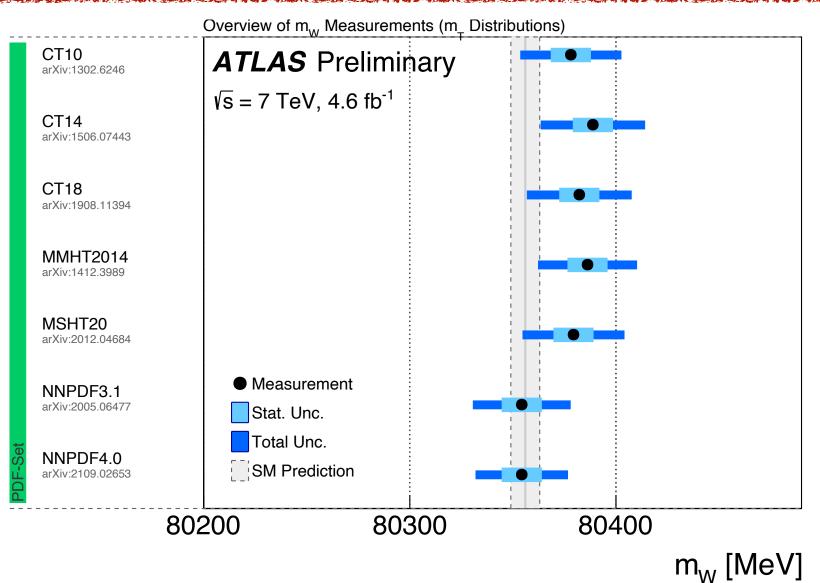
DIS2024, Grenoble, 10/04/2024

α_s from Z pT arXiv:2309.12986

$$\alpha_s(m_Z) = 0.11847 + 0.00091 - 0.00088$$

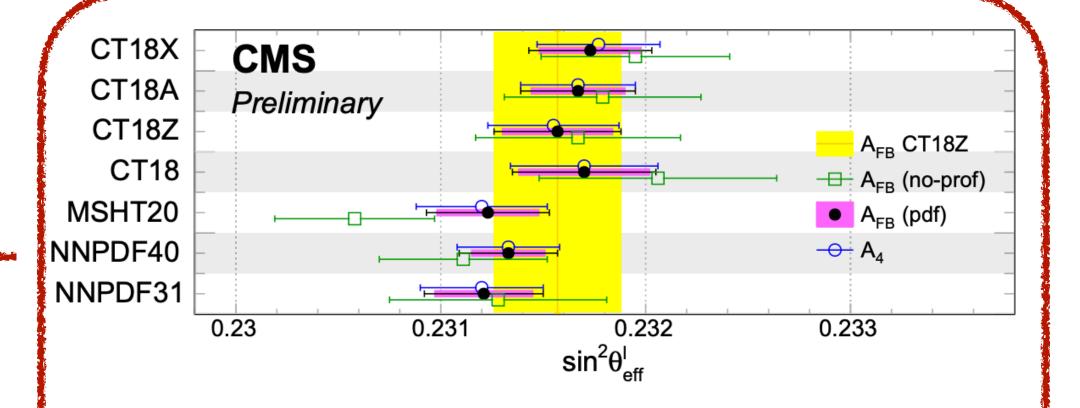
~ 0.76 %

PDF set	$\alpha_{ m s}(m_Z)$	PDF uncertainty	$g [GeV^2]$	$q [GeV^4]$	
MSHT20 [37]	0.11839	0.00040	0.44	-0.07	
NNPDF4.0 [84]	0.11779	0.00024	0.50	$ \begin{array}{c} -0.08 \\ -0.03 \end{array} $. 1 7 %
CT18A [29]	0.11982	0.00050	0.36	-0.03	1. / /0
HERAPDF2.0 [65]	0.11890	0.00027	0.40	-0.04	



W mass determination

ATLAS-CONF-2023-004



weak mixing angle at 13 TeV

CMS-PAS-SMP-22-010

α_s from Z pT arXiv:2309.12986

$$\alpha_s(m_Z) = 0.11847 + 0.00091 - 0.00088$$

PDF set	$\alpha_{\mathrm{s}}(m_Z)$	PDF uncertainty	$g \ [GeV^2]$	$q [GeV^4]$	
MSHT20 [37]	0.11839	0.00040	0.44	-0.07	
NNPDF4.0 [84]	0.11779	0.00024	0.50	$ \begin{array}{c} -0.08 \\ -0.03 \end{array} $	~ 1.7 %
CT18A [29]	0.11982	0.00050	0.36	-0.03	~ 1.7 /0
HERAPDF2.0 [65]	0.11890	0.00027	0.40	-0.04	

<u>Uncertainties in PDF determinations</u>

- Experimental (from the data)
- Theoretical (missing higher order for theory predictions, ...)
- Input SM parameters
- Methodological

A_{FB} CT18Z
A_{FB} (no-prof)
A_{FB} (pdf)
A₄

weak mixing angle at 13 TeV

CMS-PAS-SMP-22-010

CT10
arXiv:1302.6246

CT14
arXiv:1506.07443

CT18
arXiv:1908.11394

MMHT2014
arXiv:1412.3989

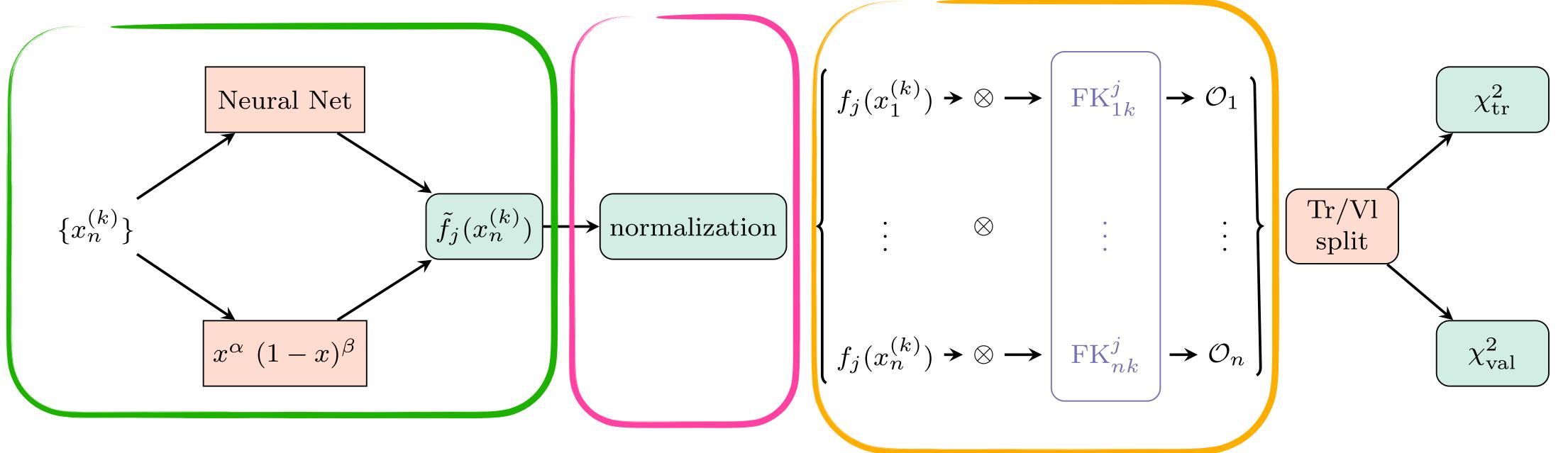
MSHT20
arXiv:2012.04684

NNPDF3.1
arXiv:2005.06477

NNPDF4.0
arXiv:2109.02653

Parametric regression

Build theory predictions for observables entering the fit



PDFs are parametrised at some initial scale $Q_0 = 1.65 \, \mathrm{GeV}$. Sum rules are imposed with suitable normalisation

Use data to build χ^2 and minimise

Bayesian approach

- Start from a prior on the model $p\left(f\right)$
- Look at the data
- Get the posterior $p\left(f|D\right)$

Prior on the model

$$\left(p\left(f|D\right)\right) = \frac{p(D|f)p\left(f\right)}{p\left(D\right)}$$

Posterior of model given the data

Introduce probability distribution on a space of functions

Build a suitable prior

Use Bayes' theorem

Gaussian Processes

$$\mathbf{f} = \begin{pmatrix} f(x_1) \\ \vdots \\ f(x_N) \end{pmatrix} \in \mathbb{R}^N$$
Parameters \mathbf{f} : stochastic variables representing values of the PDF on a grid of points

Kernel K and mean function m: functions modelling the correlation between parameters

$$m(x_i; \theta) = \mathsf{E}(f(x_i))$$

$$k(x_i, x_j; \theta) = \mathsf{cov}(f(x_i), f(x_j))$$

Hyperparameters θ : set of parameters entering the definition of the kernel (they control some specific feature of the prior)

<u>Joint probability distribution of f and θ </u>: target of the analysis $p\left(\mathbf{f}, \theta \mid \mathsf{data}\right)$

Some examples of application of GPs in physics

Gaussian process models—I. A framework for probabilistic continuous inverse theory

Andrew P Valentine **▼**, Malcolm Sambridge

Geophysical Journal International, Volume 220, Issue 3, March 2020, Pages 1632–1647, https://doi.org/10.1093/gji/ggz520

Reconstructing QCD spectral functions with Gaussian processes

Jan Horak, Jan M. Pawlowski, José Rodríguez-Quintero, Jonas Turnwald, Julian M. Urban, Nicolas Wink, and Savvas Zafeiropoulos

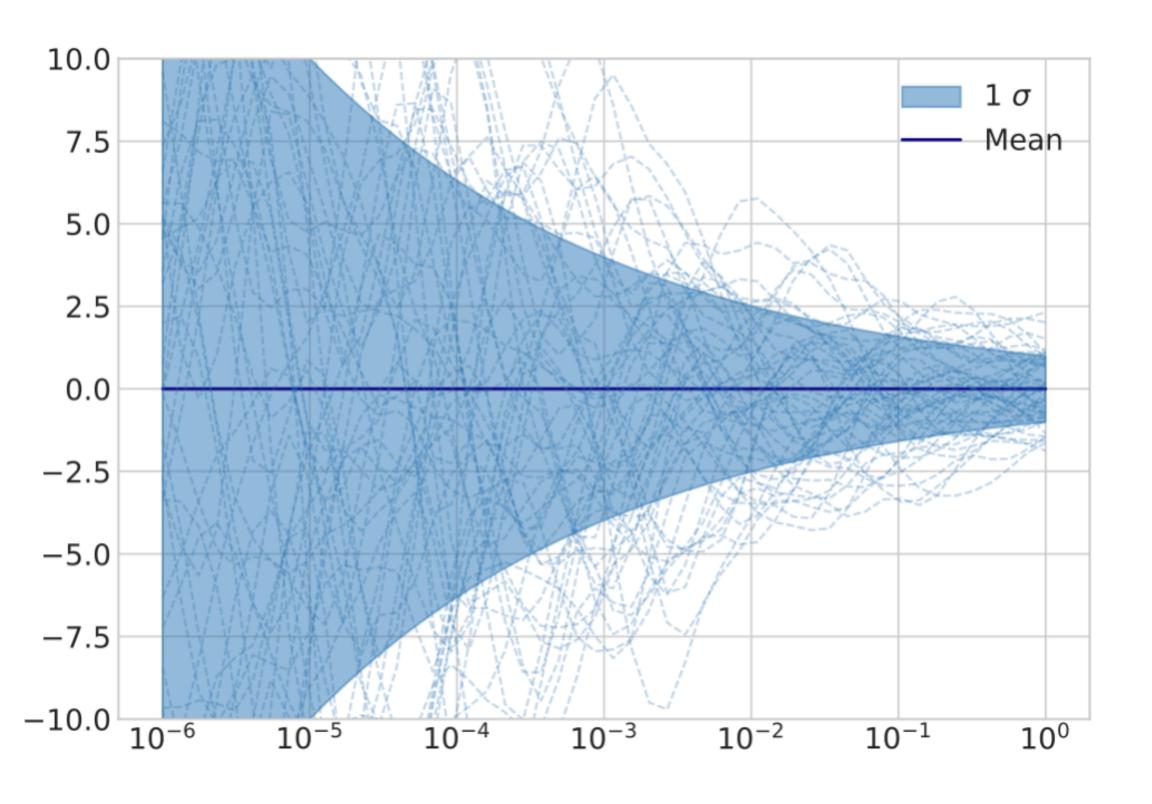
Phys. Rev. D **105**, 036014 – Published 23 February 2022

What about PDFs?

Prior for PDF

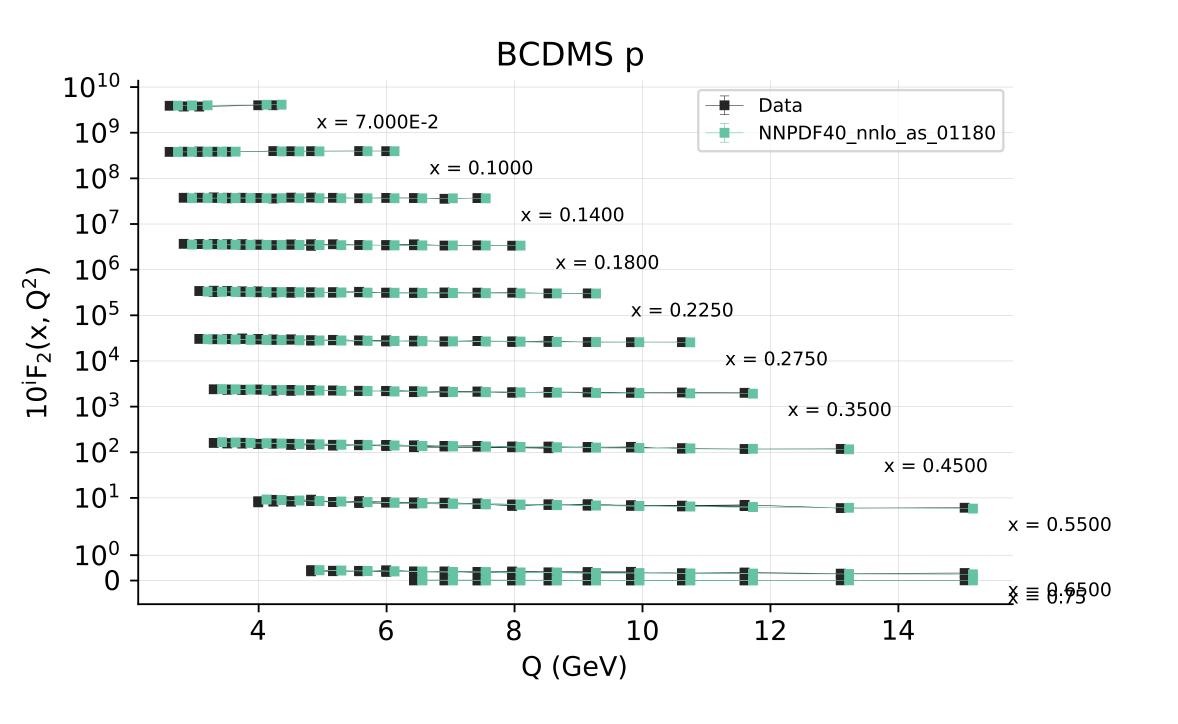
Gibbs Kernel

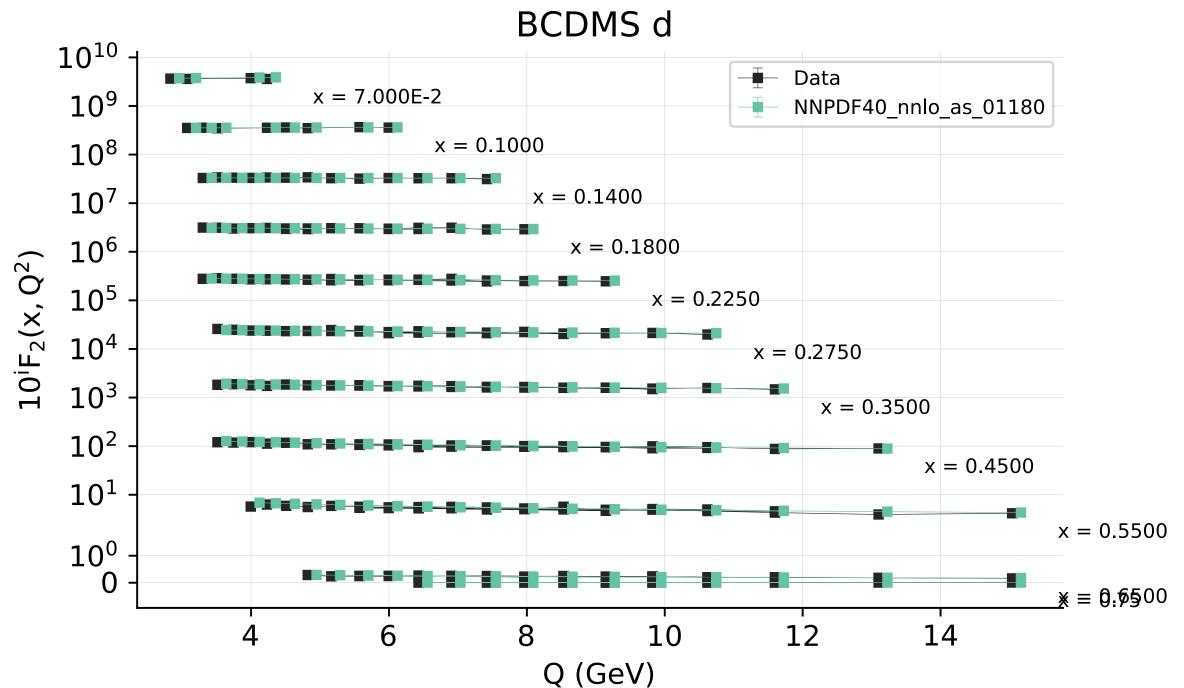
$$\tilde{k}(x,y) = x^{\alpha}y^{\alpha} \quad \sigma^{2}\sqrt{\frac{2l(x)l(y)}{l^{2}(x) + l^{2}(y)}} \exp\left[-\frac{(x-y)^{2}}{l^{2}(x) + l^{2}(y)}\right] \quad \text{with} \quad l(x) = (x+\epsilon) \times l_{0}$$



3 hyperparameters controlling different features of the prior: α , l_0 , σ

Example: $u^+ - d^+$ from BCDMS





$$\mathcal{O} = F_2^p - F_2^d = C \otimes f$$

$$f = u^+ - d^+$$

Gaussian inference

Gaussian variable representing PDF on interpolation points **X**

$$\mathcal{O} = FK\mathbf{f}$$

f*

Gaussian variable representing PDF on any set of points **x***

$$K(x, y; \theta)$$

Function modelling correlation

$$y, \quad \epsilon \sim N(0, C_y)$$

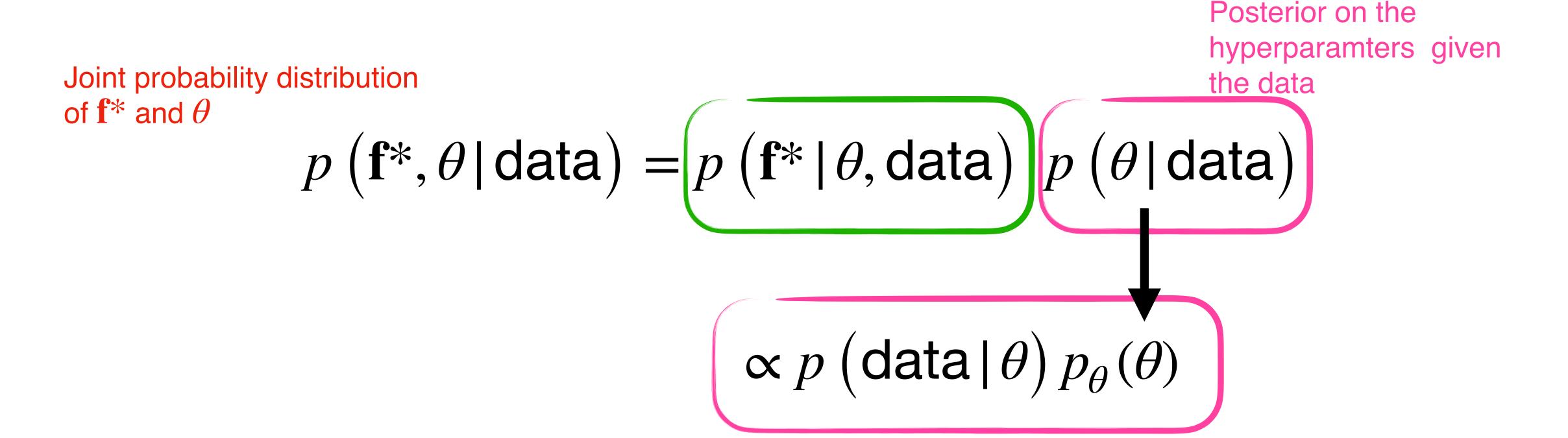
Data and corresponding experimental error

$$\begin{pmatrix} \mathbf{f}^* \\ FK\mathbf{f} \end{pmatrix} \sim \mathcal{N} \left(0, \begin{pmatrix} K_{\mathbf{X}^*\mathbf{X}^*} & K_{\mathbf{X}^*\mathbf{X}}FK^T \\ FKK_{\mathbf{X}\mathbf{X}^*} & FKK_{\mathbf{X}\mathbf{X}}FK^T \end{pmatrix} \right)$$

$$p\left(\mathbf{f}^* \mid FK\mathbf{f} + \epsilon = y, \theta\right)$$

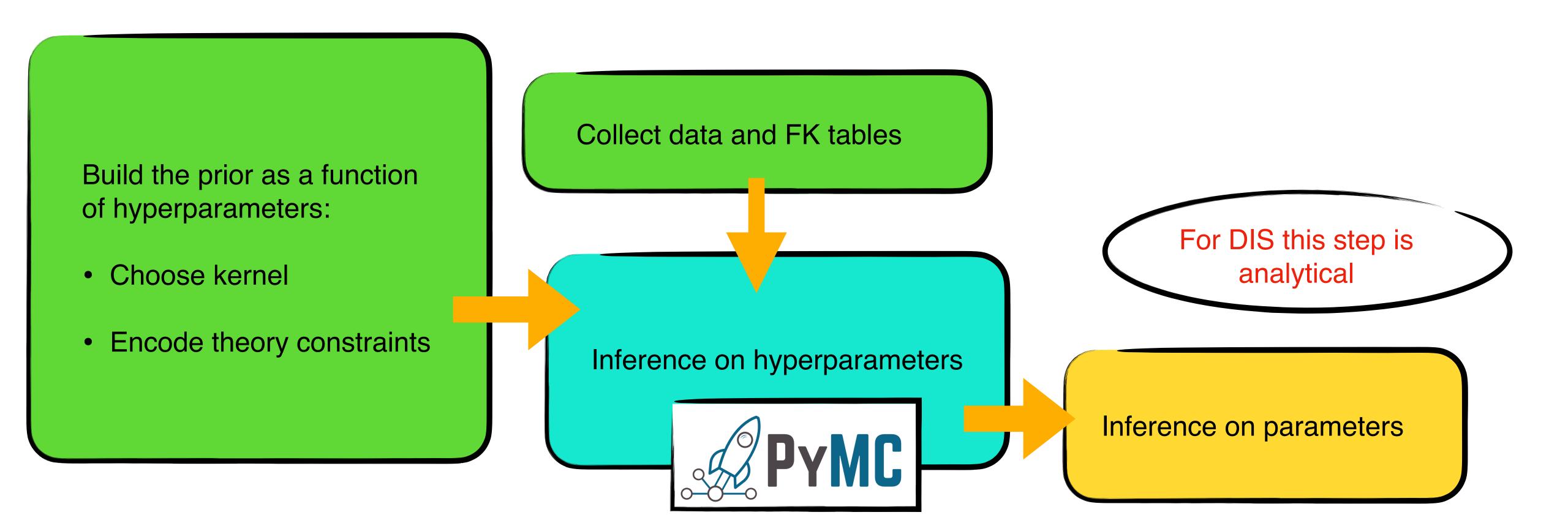
This is a gaussian distribution. Its mean and covariance can be computed analytically

Inference on the hyperparameters

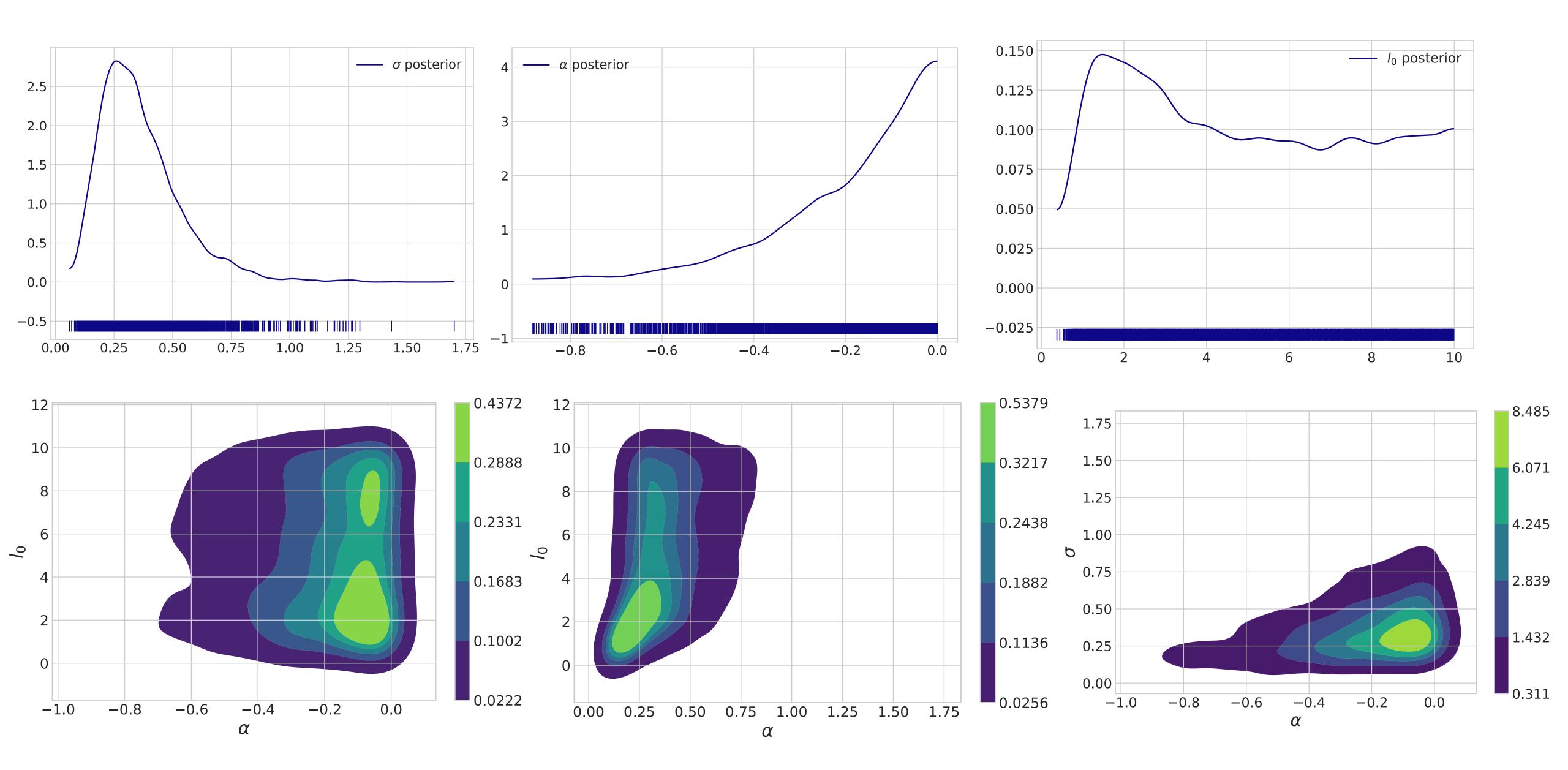


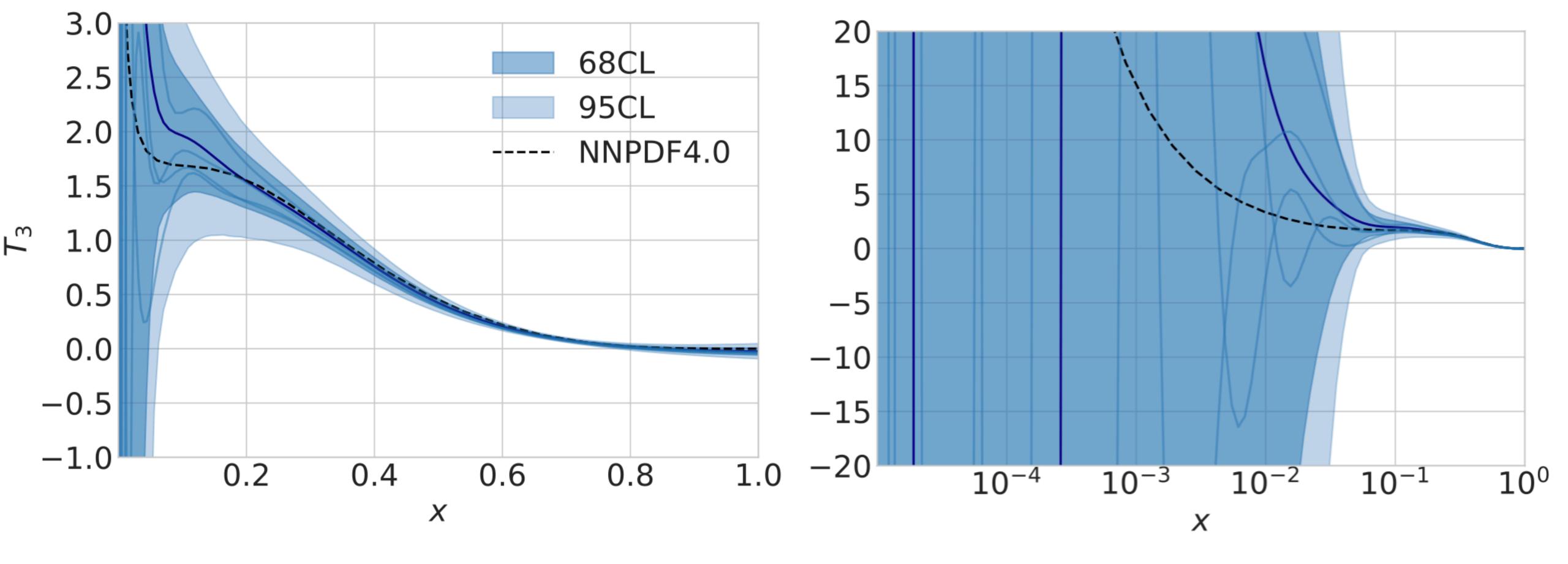
We can sample from $p\left(\theta \mid \mathsf{data}\right)$ running a MCMC algorithm

Workflow



Posterior for hyperparameters





Samples from $p\left(\mathbf{f}^*, \theta \,|\, data\right)$

uncertainty due to hyperparameter selection is incorporated into the final PDF uncertainty

Towards a full DIS fit

- 9 flavours
- Extended set of DIS data
- Same formalism and simplifications apply
- Kinetic limit f(1) = 0
- Momentum and valence sumrules

Dataset	References	$N_{ m dat}$	x	Q [GeV]
NMC F_2^d/F_2^p	[33]	260 (121/121)	[0.012, 0.680]	[2.1, 10.]
NMC $\sigma^{\text{NC},p}$	[34]	292 (204/204)	[0.012, 0.500]	[1.8, 7.9]
SLAC F_2^p	[35]	211 (33/33)	[0.140, 0.550]	[1.9, 4.4]
SLAC F_2^d	[35]	211 (34/34)	[0.140, 0.550]	[1.9, 4.4]
BCDMS F_2^p	[36]	351 (333/333)	[0.070, 0.750]	[2.7, 15.]
BCDMS F_2^d	[36]	254 (248/248)	[0.070, 0.750]	[2.7, 15.]
CHORUS σ^{ν}_{CC}	[37]	607 (416/416)	[0.045, 0.650]	[1.9, 9.8]
CHORUS $\sigma_{CC}^{ar{ u}}$	[37]	607 (416/416)	[0.045, 0.650]	[1.9, 9.8]
NuTeV σ_{CC}^{ν} (dimuon)	[38,39]	45 (39/39)	[0.020, 0.330]	[2.0, 11.]
NuTeV $\sigma_{CC}^{\bar{\nu}}$ (dimuon)	[38,39]	45 (36/37)	[0.020, 0.210]	[1.9, 8.3]
[NOMAD $\mathcal{R}_{\mu\mu}(E_{\nu})$] (*)	[111]	15 (-/15)	[0.030, 0.640]	[1.0, 28.]
[EMC F_2^c]	[44]	21 (-/16)	[0.014, 0.440]	[2.1, 8.8]
HERA I+II $\sigma^{p}_{ m NC,CC}$	[40]	1306 (1011/1145)	$[4 \cdot 10^{-5}, 0.65]$	[1.87, 223]
HERA I+II σ^{c}_{NC} (*)	[145]	52 (-/37)	$[7 \cdot 10^{-5}, 0.05]$	[2.2, 45]
HERA I+II σ_{NC}^b (*)	[145]	27 (26/26)	$[2 \cdot 10^{-4}, 0.50]$	[2.2, 45]

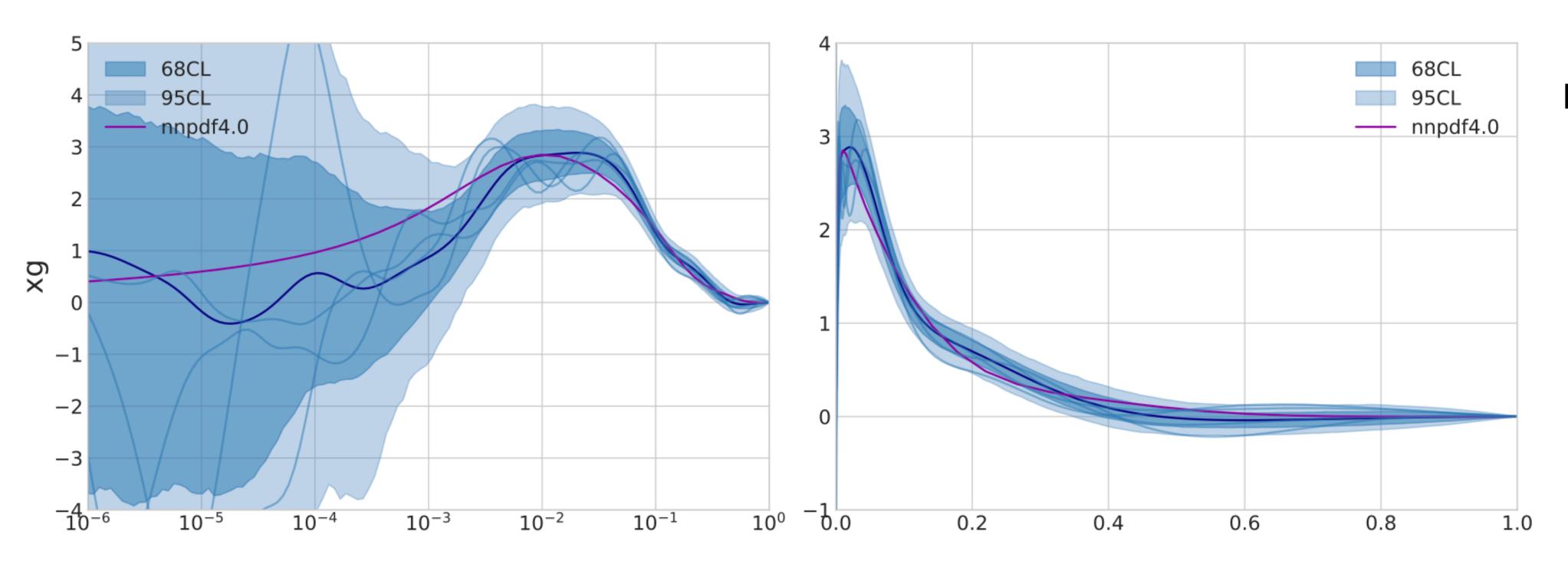


Table from Eur.Phys.J.C 82 (2022) 5

Towards a full DIS fit

- 9 flavours
- Extended set of DIS data
- Same formalism and simplifications apply
- Kinetic limit f(1) = 0
- Momentum and valence sumrules

Dataset	References	$N_{ m dat}$	x	Q [GeV]
NMC F_2^d/F_2^p	[33]	260 (121/121)	[0.012, 0.680]	[2.1, 10.]
NMC $\sigma^{{ m NC},p}$	[34]	292 (204/204)	[0.012, 0.500]	[1.8, 7.9]
SLAC F_2^p	[35]	211 (33/33)	[0.140, 0.550]	[1.9, 4.4]
SLAC F_2^d	[35]	211 (34/34)	[0.140, 0.550]	[1.9, 4.4]
BCDMS F_2^p	[36]	351 (333/333)	[0.070, 0.750]	[2.7, 15.]
BCDMS F_2^d	[36]	254 (248/248)	[0.070, 0.750]	[2.7, 15.]
CHORUS σ^{ν}_{CC}	[37]	607 (416/416)	[0.045, 0.650]	[1.9, 9.8]
CHORUS $\sigma_{CC}^{ar{ u}}$	[37]	607 (416/416)	[0.045, 0.650]	[1.9, 9.8]
NuTeV σ_{CC}^{ν} (dimuon)	[38,39]	45 (39/39)	[0.020, 0.330]	[2.0, 11.]
NuTeV $\sigma_{CC}^{\bar{\nu}}$ (dimuon)	[38,39]	45 (36/37)	[0.020, 0.210]	[1.9, 8.3]
[NOMAD $\mathcal{R}_{\mu\mu}(E_{\nu})$] (*)	[111]	15 (-/15)	[0.030, 0.640]	[1.0, 28.]
[EMC F_2^c]	[44]	21 (-/16)	[0.014, 0.440]	[2.1, 8.8]
HERA I+II $\sigma_{ ext{NC,CC}}^{p}$	[40]	1306 (1011/1145)	$[4 \cdot 10^{-5}, 0.65]$	[1.87, 223]
HERA I+II σ_{NC}^{c} (*)	[145]	52 (-/37)	$[7 \cdot 10^{-5}, 0.05]$	[2.2, 45]
HERA I+II σ_{NC}^b (*)	[145]	27 (26/26)	$[2 \cdot 10^{-4}, 0.50]$	[2.2, 45]

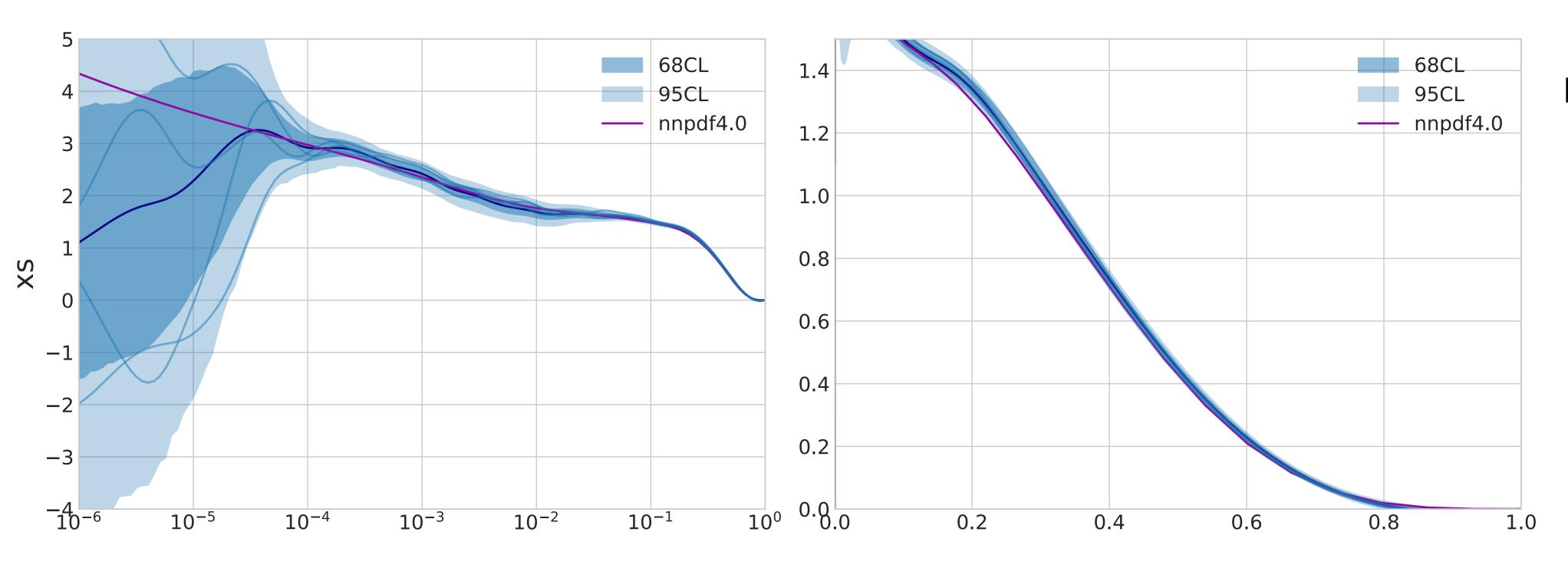


Table from Eur.Phys.J.C 82 (2022) 5

Towards a full DIS fit

- 9 flavours
- Extended set of DIS data
- Same formalism and simplifications apply
- Kinetic limit f(1) = 0
- Momentum and valence sumrules

Dataset	References	$N_{ m dat}$	x	Q [GeV]
NMC F_2^d/F_2^p	[33]	260 (121/121)	[0.012, 0.680]	[2.1, 10.]
NMC $\sigma^{NC,p}$	[34]	292 (204/204)	[0.012, 0.500]	[1.8, 7.9]
SLAC F_2^p	[35]	211 (33/33)	[0.140, 0.550]	[1.9, 4.4]
SLAC F_2^d	[35]	211 (34/34)	[0.140, 0.550]	[1.9, 4.4]
BCDMS F_2^p	[36]	351 (333/333)	[0.070, 0.750]	[2.7, 15.]
BCDMS F_2^d	[36]	254 (248/248)	[0.070, 0.750]	[2.7, 15.]
CHORUS σ_{CC}^{ν}	[37]	607 (416/416)	[0.045, 0.650]	[1.9, 9.8]
CHORUS $\sigma_{CC}^{ar{ u}}$	[37]	607 (416/416)	[0.045, 0.650]	[1.9, 9.8]
NuTeV σ_{CC}^{ν} (dimuon)	[38,39]	45 (39/39)	[0.020, 0.330]	[2.0, 11.]
NuTeV $\sigma_{CC}^{\bar{\nu}}$ (dimuon)	[38,39]	45 (36/37)	[0.020, 0.210]	[1.9, 8.3]
[NOMAD $\mathcal{R}_{\mu\mu}(E_{\nu})$] (*)	[111]	15 (-/15)	[0.030, 0.640]	[1.0, 28.]
[EMC F_2^c]	[44]	21 (-/16)	[0.014, 0.440]	[2.1, 8.8]
HERA I+II $\sigma_{ ext{NC,CC}}^{p}$	[40]	1306 (1011/1145)	$[4 \cdot 10^{-5}, 0.65]$	[1.87, 223]
HERA I+II σ_{NC}^{c} (*)	[145]	52 (-/37)	$[7 \cdot 10^{-5}, 0.05]$	[2.2, 45]
HERA I+II σ_{NC}^b (*)	[145]	27 (26/26)	$[2 \cdot 10^{-4}, 0.50]$	[2.2, 45]

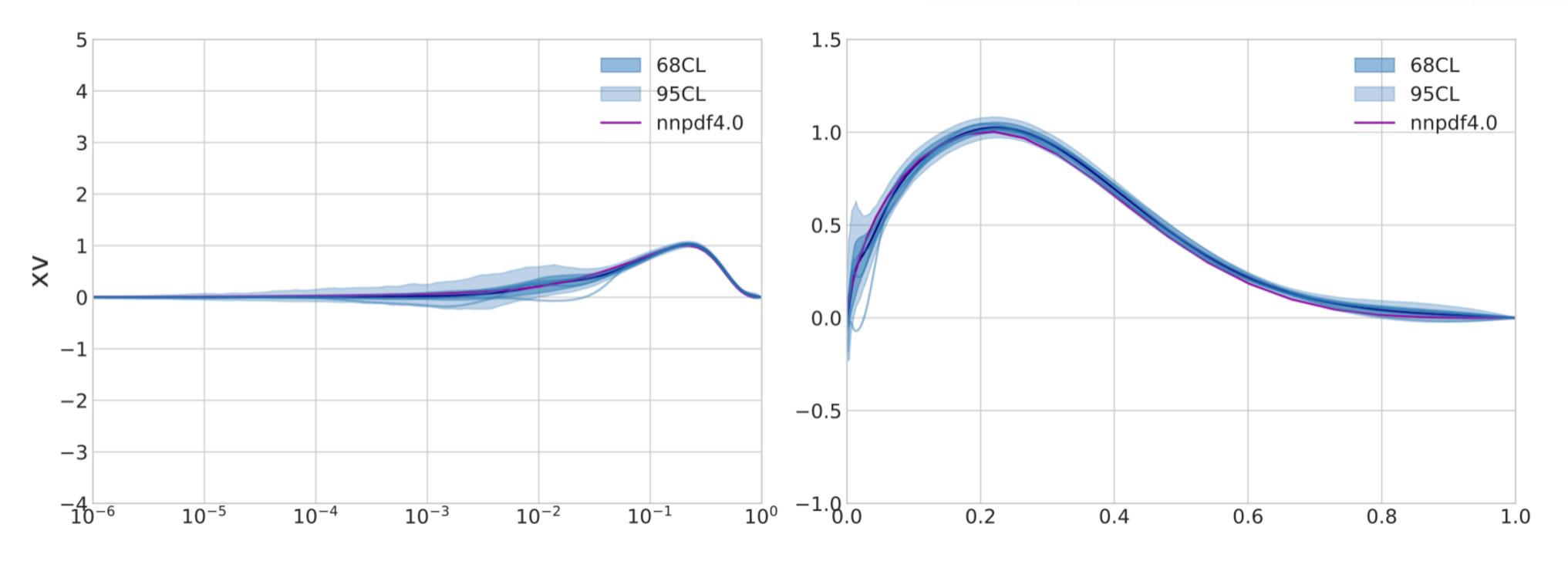


Table from Eur.Phys.J.C 82 (2022) 5

What changes in a global fit?

$$p(\mathbf{f}, \theta | \text{data}) = p(\mathbf{f} | \text{data}, \theta) p(\theta | \text{data})$$

This bit is not a gaussian distribution any longer

To access the posterior we have to run a MCMC having dimension $\dim \mathbf{f} + \dim \theta$

TO DO:

- Provide a DIS only PDF fit
- Study dependence on the kernel
- Compare with existing methodology. Are there differences?

What changes in a global fit?

$$p(\mathbf{f}, \theta | \text{data}) = p(\mathbf{f} | \text{data}, \theta) p(\theta | \text{data})$$

This bit is not a gaussian distribution any longer

To access the posterior we have to run a MCMC having dimension $\dim \mathbf{f} + \dim \theta$

TO DO:

- Provide a DIS only PDF fit
- Study dependence on the kernel
- Compare with existing methodology. Are there differences?

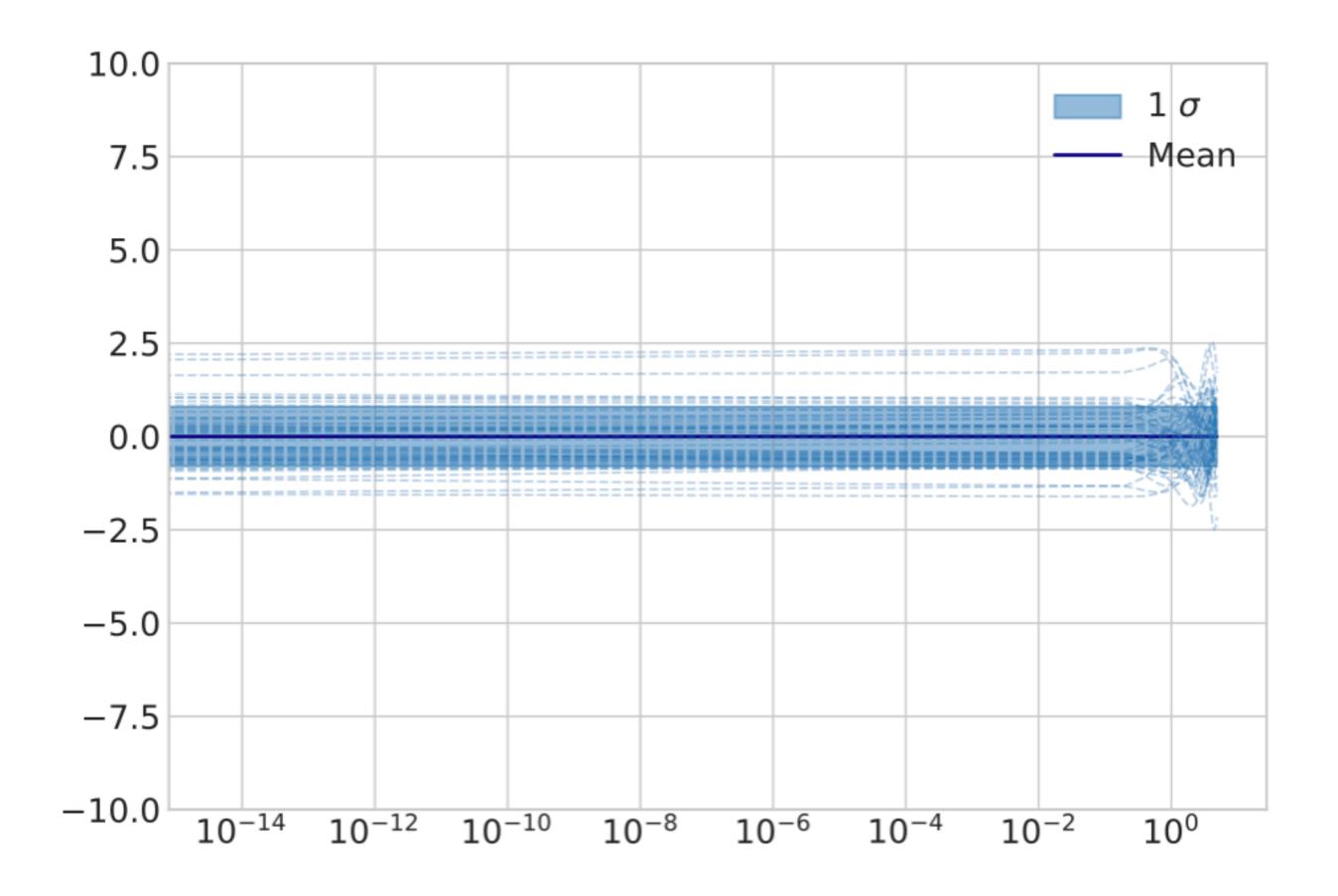
Thanks!

Backup slides

An example of a bad prior for PDFs

$$k(x,y) = \sigma^2 \exp \left[-\frac{(x-y)^2}{l^2} \right]$$

Exponential quadratic

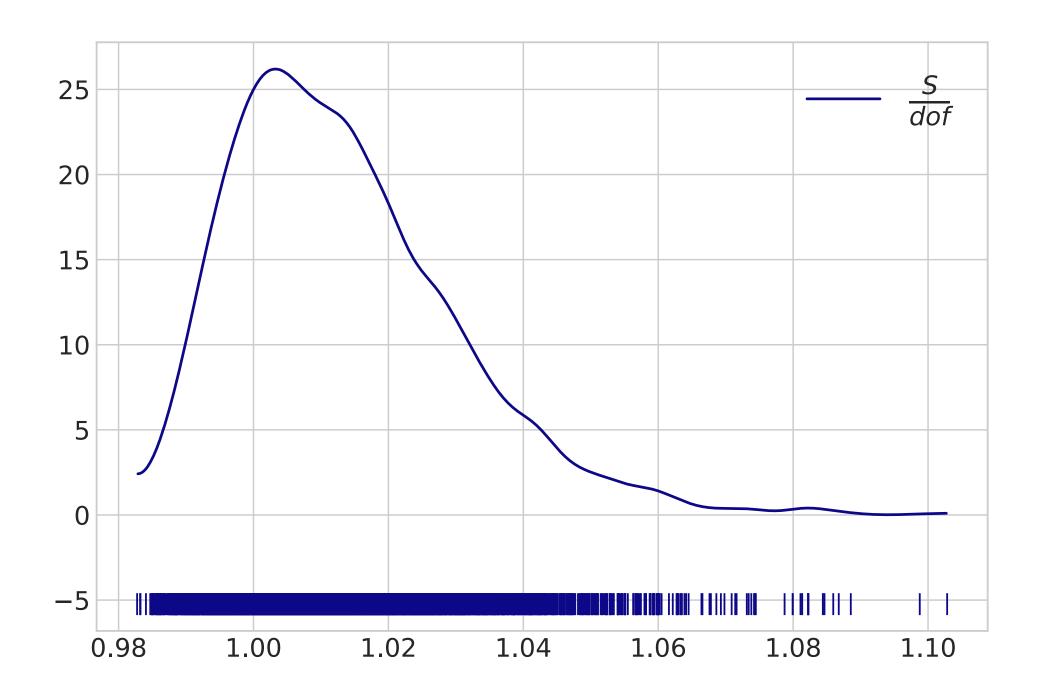


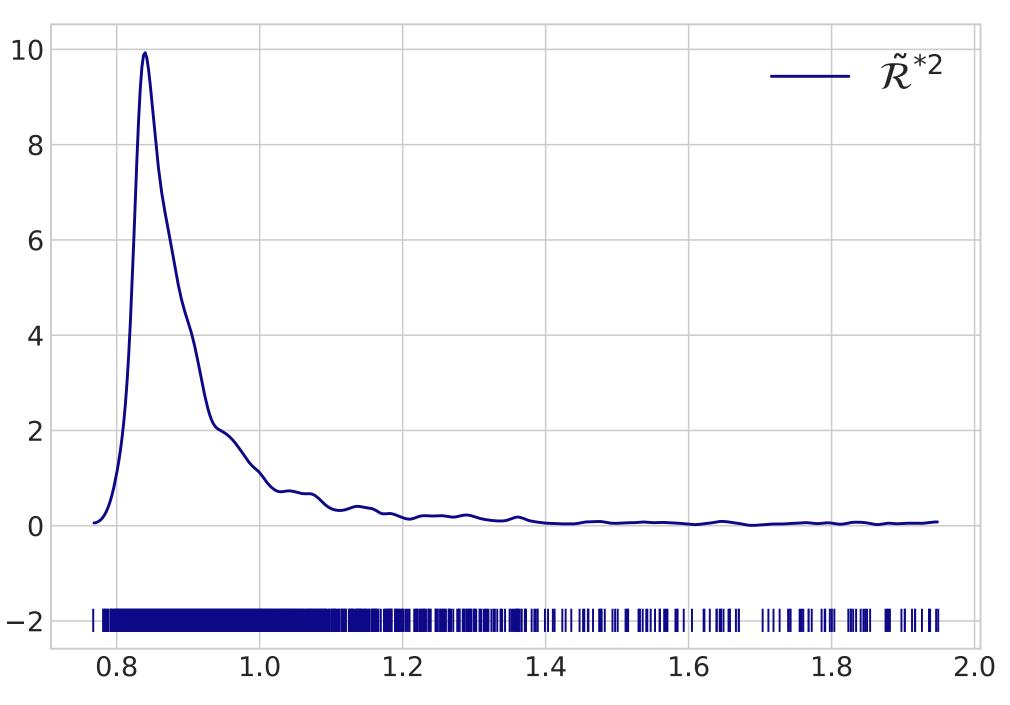
Fit quality

$$\frac{S}{dof} = \frac{1}{N_{\text{data}}} \left((\mathbf{m} - \tilde{\mathbf{m}})^T K_{xx}^{-1} (\mathbf{m} - \tilde{\mathbf{m}}) + (y - FK\tilde{\mathbf{m}})^T C_Y^{-1} (y - FK\tilde{\mathbf{m}}) \right)$$

Generalisation on unseen data

$$\tilde{\mathcal{R}}^{*2} = \frac{1}{\dim(y^* \mid y)} (FK^* \tilde{\mathbf{m}} - y^*)^T \Big(FK^* \tilde{K}_{xx} FK^{*T} + C_Y^* \Big)^+ (FK^* \tilde{\mathbf{m}} - y^*)$$





Gaussian inference

Gaussian variable representing PDF on interpolation points **X**

$$\mathcal{O} = FK\mathbf{f}$$

f*

Gaussian variable representing PDF on any set of points **x***

$$K(x, y; \theta)$$

Function modelling correlation

$$y, \quad \epsilon \sim N(0, C_y)$$

Data and corresponding experimental error

$$\tilde{\mathbf{m}}^* = \mathbf{m} + K_{\mathbf{x}^*\mathbf{x}}FK^T \left(FKK_{\mathbf{x}\mathbf{x}}FK^T + C_y \right)^+ \left(\mathbf{y} - \mathbf{m} \right)$$

$$\tilde{K}^* = K_{\mathbf{x}^*\mathbf{x}^*} - K_{\mathbf{x}^*\mathbf{x}}FK^T \left(FKK_{\mathbf{x}\mathbf{x}}FK^T + C_{\mathbf{y}} \right)^+ FKK_{\mathbf{x}\mathbf{x}^*}$$

inference of the gaussian parameters **f*** can be done analytically

Further possible applications

- simultaneous fits of PDFs and Wilson coefficients

$$\sigma_{\text{eft}}\left(c/\Lambda^{2}\right) = \sigma_{\text{SM}} + \sum_{i} \tilde{\sigma}_{i}^{\text{LO/NLO}} \frac{c_{i}}{\Lambda^{2}} + \sum_{i,j} \tilde{\sigma}_{ij}^{\text{LO/NLO}} \frac{c_{i} c_{j}}{\Lambda^{4}}$$

The top quark legacy of the LHC Run II for PDF and SMEFT analyses

Zahari Kassabov,^a Maeve Madigan,^a Luca Mantani,^a James Moore,^a Manuel Morales Alvarado,^a Juan Rojo^{b,c} and Maria Ubiali^a

JHEP 05 (2023) 205

- Inverse problems relevant for the lattice community

Reconstructing QCD Spectral Functions with Gaussian Processes

Jan Horak, Jan M. Pawlowski, José Rodríguez-Quintero, Jonas Turnwald, Julian M. Urban, Nicolas Wink, and Savvas Zafeiropoulos

Decomposition of PDF uncertainty

$$\tilde{K} = \underbrace{\left(I - R_{xx}\right)K_{\mathbf{xx}}\left(I - R_{xx}\right)^T}_{\mathbf{Methodology}} + \underbrace{\left(a_{xx}^TC_ya_{xx}\right)^T}_{\mathbf{Experimental error}}$$

$$a_{xx}^{T} = K_{xx}FK^{T} \left(FKK_{xx}FK^{T} + C_{y} \right)^{+}$$

$$R_{xx} = a_{xx}^{T}FK$$

