Revisiting "target mass corrections" in lepton-nucleus DIS

DIS 2024, Grenoble, France

Richard Ruiz ${ }^{1}$

Institute of Nuclear Physics - Polish Academy of Science (IFJ PAN)

$$
10 \text { April } 2024
$$

thank you for the invitation!

Brief highlights from a "small" © review on Target Mass Corrections (TMCs) (more in a bit!) in deep-inelastic scattering off nuclear targets

Target mass corrections in lepton-nucleus DIS theory and applications to muclear PDFs

```
A. Ruiz Om,4, K. F. Murakkn O
```



```
            F.1. Oluess\mp@subsup{0}{}{1,x}, J.F.Owens, © © , 1. Schienbein ©d,* J.Y. Yu. © 
            Trutitute of Nucieor Phprics Polish Aendenyy of Sciemees. PL-3H342 Kralov, Polond
```



```
            CNRS/N2PS, G% aunue des Matyrs, Sonz6 Grndte, Fouwe
                Ujorna Lat, Monpoor Nevs, VA 23GiLe, US,
```


Abstract

Motivited by the mide range of kinematios cowered by current and plamed deep-imelnstic santtering (DIS) facilities, we revisit the formalism, practical implementation, and numerical impact of target mass corroctions (TMCs) for DIS on unpolarized nuclear targets. An important aspect is that wo only use nucloar and later partonic degress of freedom, carefuly avoiling a piet ine of the nucleas in terms of nucleons. After establishing
that formulae used for individual nucleon targets (p, n), deqived in the Operator Product Expansion (OPE) formalism, are indeed applicable to nuclear targeta, we rewrite expressions for muclear TMCs in terms of te-scaled (or avesaged) kinematioc variables. As a consequence, we find a representat ica for nuclear TMC\& that is approcimately independent of the muclear targen. We go on to construct a singhe parameter fit for all nuclear targets that is in good mumerical agreement with full computaticus of TMCs. We discus in detail quafitative and quantitative differmeex between nuclear TMCs built in the OPE and the parton model formalisnas, as well ns give mmarrical predictions for current and future facilities
Keyuerds: DIS, Structure Functions, Target Mass Corrections, OPE, andeser PDEs
Journal: Prog Part. NucL. Phys. 136 (2024) 104096 ArXiv: 2301.07715

[^0]
Contents

1 Introduction
2 Kinematics of lepton-nucleus DIS
2.1 Definitions of kinematic rariable

Nuclear and
3.1 Lightacoue dominance of muclear DIS
32 Structure functions in the OPE ... 11
13
17
33 Master formula for struct ure fumctions with TMCx in ℓA DIS
4 Rescaling 19
41 Nuckenr and nucleon kinemntirs 19
+2 Rescalod structure functions
-
Parton model
5.1 Nuclear DGLAP evolution

52 Relatiou to the OPE
53 Rescaling.
5.4 Kinematic \boldsymbol{W} cu
$\begin{array}{lll}5.5 & \text { nPDFs far } x_{N} \geq 1 & \ldots . . \\ 5.6 & \text { Threshold problem and higher twist contributions }\end{array}$

61 parton model with quark and hadron masses
ar
62 Hellcity dexcomposition
63 Boost-invariant polarizations
6. Relatiouship between TMCs on the light-............ in in the OPE
6.5 Relation of the partces model to the OPE

Numerical results
72 Nudear st ructure finctions with TMCX
72 Nuclear si ructure furc
73
74

Conclusions

A Nuclear structure functions with TMCs in the OPE
A. 1 Preliminarics and the inclusive DIS ccess section formula

A 3 Nuclear matne ture fuctions from the OPE I
A. Neren

At Nulear struture fine mixing
B Derivation of the Full/Leading TMC Parameterizntion

the big picture

Deeply inelastic scattering (DIS) is a powerful probe of hadronic structure, hadron formation, and leptonic interactions
e.g., parity violation, new physics

motivation: ongoing (JLAB) and upcoming (CERN,FNAL,BNL) precision exp'I DIS programs require a new level of theory precision

Formally, inclusive DIS of $\ell \in\left\{\ell^{ \pm}, \nu, \bar{\nu}\right\}$ off nucleons can be described by the Collinear Factorization Theorem

Importance of subleading corrections

$\mathcal{O}\left(\frac{\Lambda_{\mathrm{NP}}^{2+k}}{Q^{2+k}}\right)$ corrections increasingly important at small Q^{2}, large x !
"target mass corrections" (TM) \rightarrow
Georgi, Politzer ('76,'76)
"renormalon" corrections" (HT) \rightarrow
Dasgupta, Webber ('91)
in extreme kinematics, necessary:

- describe DIS data
- extend validity of Fact. Thm.
- extract PDFs from structure fns.

$\mathcal{O}\left(\frac{\Lambda_{N P}^{2+k}}{Q^{2+k}}\right)$ corrections have several origins (kinematical and dynamical) Georgi, Politzer ('76,'76); Ellis, Furmanski, Petronzio ('82,'82); Dasgupta, Webber ('91); lots more

Leading twist + TMCs

proton result: kinematical corrections, i.e., target mass corrections (TMCs), can be incorporated in structure functions, $F_{i}\left(x, Q^{2}\right)$

Georgi, Politzer ('76,'76); Ellis, Furmanski, Petronzio ('82,'82); lots more; Kretzer, Reno ('02,'03); Schienbein, et al [0709.1775]
\Longrightarrow not obvious such results hold for arbitrary nuclei
especially due to questions of original derivation's correctness [Collins ('84)]

do expressions for TMCs for protons hold for nuclei?

yes

In practice, replace $F_{i}^{A(N o ~ T M C)} \rightarrow F_{i}^{A(T M C)}$ in cross sections:

$$
\begin{gathered}
\frac{d^{2} \sigma^{\mathrm{NC}}}{d x d y}=x\left(s-M^{2}\right) \frac{d^{2} \sigma^{\mathrm{NC}}}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{x y Q^{2}}\left[\frac{Y_{+}}{2} \sigma_{\text {Red. }}^{N C}\right], \\
\sigma_{\text {Red. }}^{N C}=\left(1+\frac{2 y^{2} \varepsilon^{2}}{Y_{+}}\right) F_{2}^{\mathrm{NC}} \mp \frac{Y_{-}}{Y_{+}} x F_{3}^{\mathrm{NC}}-\frac{y^{2}}{Y_{+}} F_{L}^{\mathrm{NC}}, \\
F_{L}=r^{2} F_{2}-2 x F_{1}, r=\sqrt{1+4 \varepsilon^{2}}, \varepsilon=(x M / Q) \text { and } Y_{ \pm}=1 \pm(1-y)^{2}
\end{gathered}
$$

same holds for charged current scattering

deriving TMCs for DIS with nuclei

light cone dominance

starting point for DIS on p is stipulating kinematic domiain. typically,

$$
Q^{2}=-q^{2}>0 \gg m_{\text {proton }}^{2}[\text { proton case }]
$$

light cone dominance

starting point for DIS on p is stipulating kinematic domiain. typically,

$$
Q^{2}=-q^{2}>0 \gg m_{\text {proton }}^{2}[\text { proton case }]
$$

naïve application to ${ }^{56} \mathrm{Fe}$ or ${ }^{197} \mathrm{Au}$ would require

$$
Q^{2} \gg(50 \mathrm{GeV})^{2} \sim\left(\frac{M_{z}}{2}\right)^{2} \text { or }(180 \mathrm{GeV})^{2} \sim m_{t}^{2} \text { [incorrect] }
$$

light cone dominance

starting point for DIS on p is stipulating kinematic domiain. typically,

$$
Q^{2}=-q^{2}>0 \gg m_{\text {proton }}^{2}[\text { proton case }]
$$

naïve application to ${ }^{56} \mathrm{Fe}$ or ${ }^{197} \mathrm{Au}$ would require

$$
Q^{2} \gg(50 \mathrm{GeV})^{2} \sim\left(\frac{M_{Z}}{2}\right)^{2} \text { or }(180 \mathrm{GeV})^{2} \sim m_{t}^{2}[\text { incorrect }]
$$

more precise statement

$$
Q^{2} \gg \Lambda_{\text {non-pert. }} \sim \mathcal{O}(1) \mathrm{GeV} \gg \Lambda_{\mathrm{QCD}}^{2} \sim m_{q}^{2} \text { [general case] }
$$

Bjorken scaling still works at moderate energies since $\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} / Q^{2}\right) \ll 1$
draw diagrams, currents, and build the matrix element

n-body phase space integral and summing over n gives us $W_{A}^{\mu \nu}$

$$
\frac{d^{3} \sigma}{d k_{2}^{3}} \sim \int d P S_{n} \Sigma_{n} \Sigma_{\text {spins }}
$$

in the paper, we use exact expressions for $d \sigma$, etc., so $\sim \rightarrow=$

Summing over X_{n} ensures "inclusivity" and closure, $1=\sum_{n}\left|X_{n}\right\rangle\left\langle X_{n}\right|$
this step sometimes omitted in textbooks, e.g., Halzen \& Martin

$$
\begin{gathered}
W_{\mu \nu}^{A}=\frac{1}{4 \pi} \int d^{4} z e^{i q \cdot z}\langle A| J_{h a d . \mu}^{\dagger}(z) J_{h a d . \nu}(0)|A\rangle \\
=-g_{\mu \nu} F_{1}^{A}+\frac{p_{A \mu} p_{A \nu}}{Q^{2}} 2 x_{A} F_{2}^{A}-i \epsilon_{\mu \nu \rho \sigma} \frac{p_{A}^{\rho} q^{\sigma}}{Q^{2}} x_{A} F_{3}^{A} \\
+\frac{q_{\mu} q_{\nu}}{Q^{2}} 2 F_{4}^{A}+\frac{p_{A \mu} q_{\nu}+p_{A \nu} q_{\mu}}{Q^{2}} 2 x_{A} F_{5}^{A}+\frac{p_{A \mu} q_{\nu}-p_{A \nu} q_{\mu}}{Q^{2}} 2 x_{A} F_{6}^{A}
\end{gathered}
$$

- point \#1: $F_{i}\left(x, Q^{2}\right)$ are structure functions and can be measured

$$
\text { and predicted from other experiments since parton model says } F_{i}=\sum f_{j / p}
$$

- point \#2: $W_{\mu \nu}^{A}$ is defined in the "DIS" limit:

$$
x_{A}=\frac{Q^{2}}{2 p_{A} \cdot q} \text { is fixed and }\left(Q^{2} / M_{A}^{2}\right) \rightarrow \infty
$$

Define the time-ordered ME for (virtual) $A V^{*} \rightarrow A V^{*}$ scattering

$$
\begin{gathered}
T_{\mu \nu}^{A}=\int d^{4} z e^{i q \cdot z}\langle A| \mathcal{T} J_{h a d . \mu}^{\dagger}(z) J_{h a d . \nu}(0)|A\rangle \\
=-g_{\mu \nu} \Delta T_{1}^{A}+\frac{p_{A \mu} p_{A \nu}}{M_{A}^{2}} \Delta T_{1}^{A}-i \epsilon_{\mu \nu \rho \sigma} \frac{p_{A}^{\rho} \sigma^{\sigma}}{M_{A}^{2}} \Delta T_{3}^{A} \\
+\frac{q_{\mu} q_{\nu}}{M_{A}^{2}} \Delta T_{4}^{A}+\frac{p_{A \mu} q_{\nu}+p_{A \nu} q_{\mu}}{M_{A}^{2}} \Delta T_{5}^{A}+\frac{p_{A \mu} q_{\nu}-p_{A \nu} q_{\mu}}{M_{A}^{2}} \Delta T_{6}^{A}
\end{gathered}
$$

point \#1: related to $W_{\mu \nu}^{A}$ by Fourier transformations + Cauchy's Thm

$$
\Delta T_{i}^{A}=(\text { some factor }) \times \sum_{N}^{\infty} \underbrace{F_{i}^{A N}\left(Q^{2}\right)}_{N^{\text {th }} \text { Mellin moment }=\int_{0}^{1} d y} x_{A}^{-N}
$$

point \#2: $T_{\mu \nu}^{A}$ is defined in the "short-distance" limit:

$$
\frac{x_{A}}{Q} \text { is fixed and }\left(Q^{2} / M_{A}^{2}\right) \rightarrow \infty
$$

the operator product expansion (in a nutshell)

The OPE is a formalism for decomposing products of operators
Wilson ('69); Brandt, Preparata ('71); Christ, et al ('72)
\langle some number of operators $\hat{\mathcal{O}}\rangle=\sum_{k} \underbrace{\mathcal{C}_{k}}_{\text {Wilson coeff. }} \times\langle$ fewer operators $\hat{\mathcal{O}}\rangle$

the operator product expansion (in a nutshell)

The OPE is a formalism for decomposing products of operators

```
Wilson ('69); Brandt, Preparata ('71); Christ, et al ('72)
```

\langle some number of operators $\hat{\mathcal{O}}\rangle=\sum_{k} \underbrace{\mathcal{C}_{k}}_{\text {Wilson coeff. }} \times\langle$ fewer operators $\hat{\mathcal{O}}\rangle$

1. Assume $T_{\mu \nu}^{A}$ has an OPE in the short-distance limit:

$$
\lim _{z \rightarrow 0} T_{\mu \nu}^{A} \stackrel{\text { OPE }}{=}(\text { Wilson coeff. }) \times(\text { hadronic } M E)+\ldots
$$

2. Take leading term, keeping masses power counting is ordered by "twist", $\tau=$ (dim. of EFT operator) - (\# of Lorentz indices); see also Stermen (TASI'95)
3. Organize, simplify...
$\Delta T_{i}^{A}=($ some factor $) \times\left(\sum\right.$ stuff \times Wilson $) x_{A}^{-N}$
4. Identify $F_{i}^{A N}\left(Q^{2}\right)=($ stuff \times Wilson $)$, then inverse Mellin

Nuclear structure functions with TMCs

$$
\begin{aligned}
\tilde{F}_{1}^{A, T M C}\left(x_{A}\right)= & \left(\frac{x_{A}}{\xi_{A} r_{A}}\right) \tilde{F}_{1}^{A,(0)}\left(\xi_{A}\right)+\left(\frac{M_{A}^{2} x_{A}^{2}}{Q^{2} r_{A}^{2}}\right) \tilde{h}_{2}^{A}\left(\xi_{A}\right)+\left(\frac{2 M_{A}^{4} x_{A}^{3}}{Q^{4} r_{A}^{3}}\right) \tilde{g}_{2}^{A}\left(\xi_{A}\right), \\
\tilde{F}_{2}^{A, \mathrm{TMC}}\left(x_{A}\right)= & \left(\frac{x_{A}^{2}}{\xi_{A}^{2} r_{A}^{3}}\right) \tilde{F}_{2}^{A,(0)}\left(\xi_{A}\right)+\left(\frac{6 M_{A}^{2} x_{A}^{3}}{Q^{2} r_{A}^{4}}\right) \tilde{h}_{2}^{A}\left(\xi_{A}\right)+\left(\frac{12 M_{A}^{4} x_{A}^{4}}{Q^{4} r_{A}^{5}}\right) \tilde{g}_{2}^{A}\left(\xi_{A}\right), \\
\tilde{F}_{3}^{A, \mathrm{TMC}}\left(x_{A}\right)= & \left(\frac{x_{A}}{\xi_{A} r_{A}^{2}}\right) \tilde{F}_{3}^{A,(0)}\left(\xi_{A}\right)+\left(\frac{2 M_{A}^{2} x_{A}^{2}}{Q^{2} r_{A}^{3}}\right) \tilde{h}_{3}^{A}\left(\xi_{A}\right), \\
\tilde{F}_{4}^{A, \mathrm{TMC}}\left(x_{A}\right)= & \left(\frac{x_{A}}{\xi_{A} r_{A}}\right) \tilde{F}_{4}^{A,(0)}\left(\xi_{A}\right)-\left(\frac{2 M_{A}^{2} x_{A}^{2}}{Q^{2} r_{A}^{2}}\right) \tilde{F}_{5}^{A,(0)}\left(\xi_{A}\right)+\left(\frac{M_{A}^{4} x_{A}^{3}}{Q^{4} r_{A}^{3}}\right) \tilde{F}_{2}^{A,(0)}\left(\xi_{A}\right) \\
& \quad+\left(\frac{M_{A}^{2} x_{A}^{2}}{Q^{2} r_{A}^{3}}\right) \tilde{h}_{5}^{A}\left(\xi_{A}\right)-\left(\frac{2 M_{A}^{4} x_{A}^{4}}{Q^{4} r_{A}^{4}}\right)\left(2-\xi_{A}^{2} M_{A}^{2} / Q^{2}\right) \tilde{h}_{2}^{A}\left(\xi_{A}\right) \\
& \quad+\left(\frac{2 M_{A}^{4} x_{A}^{3}}{Q^{4} r_{A}^{5}}\right)\left(1-2 x_{A}^{2} M_{A}^{2} / Q^{2}\right) \tilde{g}_{2}^{A}\left(\xi_{A}\right), \\
\tilde{F}_{5}^{A, \mathrm{TMC}}\left(x_{A}\right)= & \left(\frac{x_{A}}{\xi_{A} r_{A}^{2}}\right) \tilde{F}_{5}^{A,(0)}\left(\xi_{A}\right)-\left(\frac{M_{A}^{2} x_{A}^{2}}{Q^{2} r_{A}^{3} \xi_{A}}\right) \tilde{F}_{2}^{A,(0)}\left(\xi_{A}\right) \\
& \quad+\left(\frac{M_{A}^{2} x_{A}^{2}}{Q^{2} r_{A}^{3}}\right) \tilde{h}_{5}^{A}\left(\xi_{A}\right)-\left(\frac{2 M_{A}^{2} x_{A}^{2}}{Q^{2} r_{A}^{4}}\right)\left(1-x_{A} \xi_{A} M_{A}^{2} / Q^{2}\right) \tilde{h}_{2}^{A}\left(\xi_{A}\right) \\
& \quad+\left(\frac{6 M_{A}^{4} x_{A}^{3}}{Q^{4} r_{A}^{5}}\right) \tilde{g}_{2}^{A}\left(\xi_{A}\right), \\
\tilde{F}_{6}^{A, \mathrm{TMC}}\left(x_{A}\right)= & \left(\frac{x_{A}}{\xi_{A} r_{A}^{2}}\right) \tilde{F}_{6}^{A,(0)}\left(\xi_{A}\right)+\left(\frac{2 M_{A}^{2} x_{A}^{2}}{Q^{2} r_{A}^{3}}\right) \tilde{h}_{6}\left(\xi_{A}\right) .
\end{aligned}
$$

running numbers

running the numbers

we use NLO PDFs (nCTEQ15) to build str. fns. At LO, these are

$$
\begin{array}{ll}
F_{1}^{\nu A}=(d+s+\bar{u}+\bar{c}), & F_{1}^{\bar{\nu} A}=(u+c+\bar{d}+\bar{s}) \\
F_{2}^{\nu A}=2 x(d+s+\bar{u}+\bar{c}), & F_{2}^{\bar{\nu} A}=2 x(u+c+\bar{d}+\bar{s}) \\
F_{3}^{\nu A}=+2(d+s-\bar{u}-\bar{c}), & F_{3}^{\bar{\nu} A}=-2(u+c-\bar{d}-\bar{s}, \\
F_{2}^{l^{ \pm} A}=x \frac{1}{9}[4(u+\bar{u})+(d+\bar{d})+4(c+\bar{c})+(s+\bar{s})]
\end{array}
$$

for many targets

Symbol	A	Z									
H	1	1	Be	9	4	Ca	40	20	Xe	131	54
D	2	1	C	12	6	Fe	56	26	W	184	74
${ }^{3} \mathrm{He}$	3	2	N	14	7	$\mathrm{Cu}_{\text {iso }}$	64	32	Au	197	79
He	4	2	Ne	20	10	$\mathrm{Kr}_{\text {iso }}$	84	42	Au	iso	197
Li	6	3	Al	27	13	$\mathrm{Ag}_{\text {iso }}$	108	54	$\mathrm{~Pb}_{\text {iso }}$	207	103.5
Li	7	3	Ar	40	18	$\mathrm{Sn}_{\text {iso }}$	119	59.5	Pb	208	82

reduced cross sections for many nuclear targets

Plotted: (upper) reduced cross sections with nTMCs; (lower) ratio to w/o

something interesting

the operator product expansion (in a nutshell)

The OPE is a formalism for decomposing products of operators
Wilson ('69); Brandt, Preparata ('71); Christ, et al ('72)
\langle some number of operators $\hat{\mathcal{O}}\rangle=\sum_{k} \underbrace{\mathcal{C}_{k}}_{\text {Wilson coeff. }} \times\langle$ fewer operators $\hat{\mathcal{O}}\rangle$
As an intermediate step, we set $\left(M_{A}^{2} / Q^{2}\right) \rightarrow 0$:

structure fns. $=($ short-dist. phys.) $\times($ hadronic matrix element $)$

what does this mean?

for proton, $F_{i}^{N}=C_{i}^{N} \times A^{N}+$ power corrections \Longrightarrow "PDFs $=$ QCD \times hadronic matrix element"

for A, it is common to parameterize PDF as combination of "bound" \mathcal{P} and \mathcal{N} PDFs

for $A, F_{i}^{A N}=C_{i}^{N} \times A^{N}+$ power corrections
 \Longrightarrow "PDFs $=$ QCD \times had. ME" ("nucleon" picture not necessary)

Rescaling

Moreover, TMCs have particular kinematical dependence:

$$
\frac{x_{A}}{\xi_{A}} \quad \text { or } \quad\left(\frac{x_{A}^{2} M_{A}^{2}}{Q^{2}}\right)
$$

Define "average (nucleon) kinematics": $M_{N} \equiv M_{A} / A$ and $x_{N} \equiv A x_{A}$

$$
\frac{x_{A}}{\xi_{A}}=\frac{x_{N}}{\xi_{N}} \quad \text { or } \quad\left(\frac{x_{A}^{2} M_{A}^{2}}{Q^{2}}\right)=\left(\frac{x_{N}^{2} M_{N}^{2}}{Q^{2}}\right)
$$

Consequence: TMCs for A-independent, "averaged" nucleon str. fns. matches intuitive picture of nuclei \rightarrow

- same expressions as for A but replace " A " with " N "

Summary and conclusion

The nCTEQ collaboration has revisited the theory and phenomenology TMCs in DIS off nuclear targets
nCTEQ Collaboration [2301.07715]

- extended formalism for protons to nuclei
- pedagogical appendix that fills in gaps in literature/texts
- lots of phenomenology, numbers, and plots (... so many plots - JLAB, EIC, LBNF)
- hope this work guides future discussions
- lots not covered (ACOT, uncertainties, $x_{N}>1$, fit results), so see the paper!

Thank you!

backup

more numbers

running the numbers

we use NLO PDFs (nCTEQ15) to build str. fns. At LO, these are

$$
\begin{array}{ll}
F_{1}^{\nu A}=(d+s+\bar{u}+\bar{c}), & F_{1}^{\bar{\nu} A}=(u+c+\bar{d}+\bar{s}) \\
F_{2}^{\nu A}=2 x(d+s+\bar{u}+\bar{c}), & F_{2}^{\bar{\nu} A}=2 x(u+c+\bar{d}+\bar{s}) \\
F_{3}^{\nu A}=+2(d+s-\bar{u}-\bar{c}), & F_{3}^{\bar{\nu} A}=-2(u+c-\bar{d}-\bar{s}, \\
F_{2}^{l^{ \pm} A}=x \frac{1}{9}[4(u+\bar{u})+(d+\bar{d})+4(c+\bar{c})+(s+\bar{s})]
\end{array}
$$

for many targets

Symbol	A	Z									
H	1	1	Be	9	4	Ca	40	20	Xe	131	54
D	2	1	C	12	6	Fe	56	26	W	184	74
${ }^{3} \mathrm{He}$	3	2	N	14	7	$\mathrm{Cu}_{\text {iso }}$	64	32	Au	197	79
He	4	2	Ne	20	10	$\mathrm{Kr}_{\text {iso }}$	84	42	Au	iso	197
Li	6	3	Al	27	13	$\mathrm{Ag}_{\text {iso }}$	108	54	$\mathrm{~Pb}_{\text {iso }}$	207	103.5
Li	7	3	Ar	40	18	$\mathrm{Sn}_{\text {iso }}$	119	59.5	Pb	208	82

ratio of $F_{i}^{\mathrm{TMC}} / F_{i}^{\text {no TMC }}$

Plotted: ratio for $(\mathrm{L}) F_{1}^{W^{-}}$and $(\mathrm{R}) F_{3}^{W^{-}}$at $Q=1.5 \mathrm{GeV}$

Can you spot the ${ }^{1} \mathrm{H}$ and ${ }^{2} \mathrm{D}$ curves?

Plotted: ratio for $(\mathrm{L}) F_{2}^{W^{-}}$and $(\mathrm{R}) F_{2}^{\gamma / Z}$ at $Q=1.5 \mathrm{GeV}$

Can you spot the ${ }^{1} \mathrm{H}$ and ${ }^{2} \mathrm{D}$ curves?
ratio of $F_{i}^{\mathrm{TMC}} / F_{i}^{\text {leading TMC }}$

Plotted: ratio for (L) $F_{i}^{Z / \gamma}$, (C) $F_{i}^{W^{+}}$, (R) $F_{i}^{W^{-}}$for $i=2$ (upper) and $i=3$ (lower)

remarkable uniformity! (good enough to fit! ©)

reduced cross sections

Plotted: (upper) reduced cross sections with nTMCs; (lower) ratio to w/o

[^0]: risse pouni-muenster. de (P. Rixse ©), accardi8jlab. org (A.Actardi ©), pitduventjyu.fi (P. Duwent aster ©), timsonl. gov

