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Deep inelastic scattering

> Inclusive deep inelastic scattering (DIS) measurements
in lepton-hadron collisions (ep — eX) are essential to
determine the parton distribution functions (PDFs) of the
proton (xf). At leading order: )20
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= By measuring F, and F3, the quark- and antiquark- P(P) X

distributions, xq and x@, can be probed
> By measuring F or using scaling violations in DGLAP equations the product of the gluon
distribution xg and the strong coupling constant «s can be determined

» Using higher-order terms, the two can be disentangled to some extent, but a strong
correlation remains (when using only HERA data)
See talk from K.Wichmann on Wednesday 17:45 |




Jet measurements 1/2°

> Already at leading order, jet production in DIS is jet
sensitive to the strong coupling independently of _
the gluon distribution (upper graph) et
Jet production

> Additionally, jet production can also be used to

further constrain the gluon distribution (lower P(P) %
graph)

> Inclusive jet measurements are especially well e(k) e(k)
suited for precision determinations of the strong .
coupling constant due to their small uncertainties 1/Z

on both the experimental and theoretical side et
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TLeading order in the Breit frame; see slide A1 P(P) X



Experiment

HERA accelerator

Hall North

> World’s only lepton-hadron collider so far (H1)

> Located at DESY in Hamburg, Germany HERA s

> Two run periods: Hall Wes N
» HERA I: 1992 — 2000 bomis
» HERA II: 2003 — 2007

> PETRA DESY  Hall South

Circular collider of length 6336 m

(ZEUS)

v

Collide electrons/positrons at 27.5 GeV
with protons at 920 GeV — /s = 318 GeV

ZEUS detector
> General purpose particle detector
> Integrated luminosity during HERA I1: 347 pb~"

> High-resolution uranium-scintillator calorimeter
allows precise measurement of jet energies




Measurement

> Inclusive jets, clustered using k, algorithm
and p, -weighted scheme in Breit frame

> Use entire HERA |l dataset (347 pb~")

> Analysis phase space

150 GeV? <
0.2<
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< 15000 GeV?
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Measurement

e(k)

Inclusive jets, clustered using k. algorithm
and p, -weighted scheme in Breit frame

Use entire HERA |l dataset (347 pb™")
Analysis phase space
150GeV? < @* <15000GeV?
02< y <07

7GeV < P Breit < 50 GeV
—1< na <25 P(P)

Boson virtuality/
Momentum transfer

Hadron-level jets = P =—(K k7

Weak-boson exchange included . .
Bjorken scaling
QED Born-level (higher-order radiative X8 = 5p 4 q parameter

effects removed)
y=5- Inelasticity



ZEUS > Reconstructed jets corrected to

4 T T Bl T . B .
% 10 150 < Q2 < 200 GeV? 200 < Q? < 270GeV? 270 < Q% < 400GeV? hadron level via two-dimensional
< 103 | matrix unfolding procedure using
5 response matrices obtained from
£ 102 Monte Carlo samples
3
Z ol Ml » ARIADNE: colour-dipole
Simulation ] model
{1 ] S W M N I A A A W I N T N .
10”10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 » LEPTO: leading-log parton
P1,Breit (GeV) P1,Breit (GeV) P1,Breit (GeV) cascade
104 :
ﬁ 400 < Q2 < 700 GeV? 700 < Q? <5000GeV?| |5000 < :::::::o::v’ > After reweighting, the models
[P || Avaane || give a good description of the
s ——— data across the entire phase
5 space
Z 102

> Performed cross-check using

SR O U . I N O N B L] bin-by-bin correction; results are
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 very consistent

P,Breit (GeV) PL,Breit (GeV) P1,Breit (GeV) y
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Systematics

Relative uncertainty (%)
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- Jet-energy scale mm Background contribution
- MC model - Other corrections

mm Electron uncertainties mm QED-radiation correction
mm Quality-cut variations — Unfolding uncertainty

> Systematic uncertainty

mostly dominated by
jet-energy scale
(uncertainty of MC
detector simulation)

In high-p. greit OF
high-Q? region, other
uncertainties become
relevant/dominant

Unfolding uncertainty
appears large in
low-statistics region

Bins with large unfolding
uncertainty usually
strongly anti-correlated
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> Systematic uncertainty
mostly dominated by
jet-energy scale
(uncertainty of MC
detector simulation)

> In high-p. greit OF
high-Q? region, other
uncertainties become
relevant/dominant

> Unfolding uncertainty
appears large in
low-statistics region

> Bins with large unfolding
uncertainty usually
strongly anti-correlated
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NNLO (grid®scalee PDF®had.)
Jet-energy-scale uncertainty
T T T

Ratio to NNLO
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> Measured cross sections are
compatible with previous
measurement from H1 collaboration’
and uncertainties are comparable*

> Measurements are compatible with
NNLO QCD predictions®

> Inner error bars: unfolding
uncertainty; outer error bars: total
uncertainty

TEPJC 75, 65 (2015). arXiv:1406.4709

*For both measurements, uncertainties appear
larger due to negative correlations

$Matrix elements from NNLOJET (JHEP 2017,
18 (2017). arXiv:1703.05977), PDFs:
HERAPDF2.0Jets NNLO (EPJC 82, 243 (2022).
arXivi2112.01120)


https://doi.org/10.1140/epjc/s10052-014-3223-6
https://arxiv.org/abs/1406.4709
https://doi.org/10.1007/JHEP07(2017)018
https://doi.org/10.1007/JHEP07(2017)018
https://arxiv.org/abs/1703.05977
https://doi.org/10.1140/epjc/s10052-022-10083-9
https://arxiv.org/abs/2112.01120

QED radiation

Treatment of QED radiation

»

Predictions for jet production available at QED Born-level
(running coupling included, but no radiative corrections)

In the data, have initial- and final-state QED radiation,

especially on the electron line

Standard procedure: apply ‘correction’ to the data, to

convert it to QED Born-level

Usually, this cannot be undone, such that data can only
ever be compared to QED Born-level predictions

This analysis: apply correction in a reversible way and
provide additional, alternative correction that facilitates
more comprehensive comparisons

Data can be compared to NNLO QCD+NLO EW
predictions, when they become available in the future’

TDIS at NLO EW already available: CPC 94, 2 p.128 (1996). arXiv:hep-ph/9511434

QED Born-level
e(k) e(k’)

p'(p)

P(P) X

QED radiation
vy

e(k) e(k')


https://doi.org/10.1016/0010-4655(96)00005-7
https://arxiv.org/abs/hep-ph/9511434

Strategy

» Simultaneous fit of PDF parameters and as(MZ) at NNLO
> Datasets used

e(k)
H1+ZEUS combined inclusive DIS*

ZEUS HERA linclusive jets at high Q%
ZEUS HERA I+l dijets at high Q%%
ZEUS HERA Il inclusive jets at high G2

Inclusion of additional jet data is expected to
reduce uncertainty of as(M2)

v vV

v

Statistical correlations between ZEUS HERA Il jet P(P)
datasets taken into account via correlation matrix

Use HERAPDF parameterisation of PDFs (f = g, u, dy, U, D)

TEPJC 75, 580 (2015)

xf(x) = Ax® (1 — x)%(1 + Dex + Ex®) arXiv:: 1506. 06042
. . ¥PLB 547, 164 (2002
Use settings similar to HERAPDF2.0Jets NNLO (central arxw;;hep_ex(/ozogoy
scales, cuts, model parameters, treatment of hadronisation SEPJC 70, 965 (2010)

and theory grid uncertainty) arXiv::1010.6167


https://doi.org/10.1140/epjc/s10052-015-3710-4
https://arxiv.org/abs/:1506.06042
https://doi.org/10.1016/S0370-2693(02)02763-6
https://arxiv.org/abs/:hep-ex/0208037
https://doi.org/10.1140/epjc/s10052-010-1504-2
https://arxiv.org/abs/:1010.6167
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= Including new dataset
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> Perform two fits and compare PDFs:

HERA inclusive DIS dataset
+ previous ZEUS jet datasets

Also include newly measured
ZEUS HERA Il inclusive jet
datasets

> Shown is exp./fit uncertainty

> Gluon distribution is slightly
constrained’

> As expected, quark distributions are
not significantly affected/constrained

TUncertainties, especially of gluon distribution,
appear larger than in HERAPDF, because as(Mzz)
is left free in the fit, compare e.g. fig. 4 in
arXivi2112.01120


https://arxiv.org/abs/2112.01120

For reference, HERAPDF2.0Jets NNLO found
as(M%) = 0.1156 + 0.0011 (exp./it) +0-9091 (model/param.) +0.0029 (scale)

This analysis

as(M5) = 0.1143 4 0.0017 (exp./ffit) +3:99% (model/param.) +3-9912 (scale)

> Central value is compatible with HERAPDF and with PDG world average
Strong coupling . .
e > Increased experimental uncertainty, due to fewer jet datasets used

> Significantly decreased scale uncertainty, due to absence of low-Q? jet data

» Cross-section scale-dependence assumed as fully correlated between all jet
measurements

» When fitting points far away from each other in phase space, the cross-section
scale-dependence can be much less correlated or even anti-correlated
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Strong coupling

> Alternative treatment: assume scale
dependence is half correlated between all
measurements

> Despite absence of low-Q? jet data in the fit,
additional reduction is significant
as(M%) = 0.1143 £ ... +0.0012 (scale)
1

as(M5) = 0.1142 + ... +0:0006 (scale)


https://doi.org/10.1093/ptep/ptac097
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> Upper panel: x*(as(M2))-scan,

alongside result from as(M2)-free fit
— excellent agreement

Lower panel: analogous figure from
HERAPDF2.0Jet NNLO

Need better treatment of scale
uncertainty, so that we can combine
small scale uncertainty from ZEUS
with small experimental uncertainty
from HERAPDF



> Strong coupling depends on the scale
at which it is evaluated. At leading
order

QS(Ng)
1+ as(pg)bo |og(%§)
> ‘Measure’ this curve to test if QCD is

the correct theory to describe strong
interaction

QS(Mz) =

Running coupling » Assign each jet point a scale

» Form subsets of jet points with
similar scales

» For each subset, perform a
single-parameter «s fit using fixed
PDFs



> Strong coupling depends on the scale
at which it is evaluated. At leading
order

CVS(Ng)

1+ as(p3)bo |og(ﬁ—§)

QS(Mz) =

> ‘Measure’ this curve to test if QCD is
the correct theory to describe strong
interaction

Running coupling » Assign each jet point a scale

» Form subsets of jet points with
similar scales

» For each subset, perform a
single-parameter «s fit using fixed
PDFs

> Observe no deviation from QCD prediction

as(u?)

ZEUS

0.35
== PDG world average
[ ® ZEUS jets 347pb 1
= OPAL e*e~ jets/shapes |
0.30 - + JADE e*e~ three-jets |
v ALEPH e*e~ shapes
« HERA jets
H1 jets
+ CMS tt
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Summary

Cross section measurement

> Performed precision measurement of
inclusive jet cross sections in deep
inelastic scattering at ZEUS

» Used more than 70% of the entire
available luminosity at ZEUS

» Cross sections are compatible with the
corresponding H1 measurement and
NNLO QCD theory

> New dataset is an ideal ingredient for
precision determinations of as(MZ) in
QCD fits

10t

10°

Ratio to NNLO

¥

*ZEUS 347pb~?!

oH1

NNLO (gridescaleePDF®had.)

Jet-energy-scale uncertainty
T T T

02 AR
(Gev?) 15020




Summary

QCD analysis

> Dataset used in as(MZ) determination at
NNLO

> Achieved very precise measurement of
as(MZ)
as(MZ) = 0.1142 +0.0019

due to

» Newly measured inclusive jet dataset

» Restriction to high-Q? jet data in the fit

» Improved treatment of theoretical
uncertainty

> Investigated scale-dependence of strong
coupling and found results consistent with
NNLO QCD prediction

BP 2008-16 FO |
Boito 2018 FO
Boito 2021 FO
PDG 2020 tau
Ayala 2023

Mateu 2018
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Narison 2018 (ce)
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> Single jets may arise purely from QED, which is less interesting for the study of QCD

> To suppress these events: require minimum transverse momentum in Breit frame

v/2° v/2° In the Breit frame, the
Y’\ z parton and boson
: collide head-on
Breit frame jet =

/ 0
p 0
q q q' = 0

-Q

Q/2
0
PP=1 9




> Single jets may arise purely from QED, which is less interesting for the study of QCD

> To suppress these events: require minimum transverse momentum in Breit frame

v/2° v/2° In the Breit frame, the

X’\ 2 parton and boson
: collide head-on
Breit frame jet =

q q" =

[eoNeNe)

v/2° -Q

\Z v/2°
jet jet Q({ 2
= p
jet P 0
/ et Q/2
P q

> Lowest order process: produce two jets of equal transverse momentum (“dijet”)

N

q

> Inclusive jets: count each jet individually; events can contribute multiple times



Theoretical predictions
> Cross section predictions are calculated at NNLO
> Matrix elements calculated using NNLOJET!
> PDFs taken from HERAPDF2.0Jets NNLO?
NNLO predictions > as(Mzz) =0.1155, 42 = ﬂfz e
> Predictions corrected for hadronisation and Z°-exchange

Theoretical uncertainties

> Six point scale variation by factor 2

> PDF uncertainty (fit, model, parameterisation)

> Statistical uncertainty of matrix element generation
> Hadronisation correction uncertainty

fJHEP 2017, 18 (2017). arXiv:1703.05977
TEPJC 82, 243 (2022). arXiv:2112.01120

\g /s

jet

jet
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https://doi.org/10.1007/JHEP07(2017)018
https://arxiv.org/abs/1703.05977
https://doi.org/10.1140/epjc/s10052-022-10083-9
https://arxiv.org/abs/2112.01120

Fit settings

Fit settings

NLO | NNLO
Model parameters
fs 04+0.1
Me [GeV] 1.46 tgil?;tmetris 1.41 tg.y%metrise
mp [GeV] 4.3+0.10 4.2 +0.10
Qhin [GeV?] 35713
Parameterisation
Nfz() [GeV2] 1.9 -Ig);glmetrise
Additional all missing D and E parameters
parameters | (Dy, Eg, Dy,, Da,, Eq4,, Eg, Dp, Ep)
Scales
2 2
Mt Q 2
QP+ 2
f (@ +p2)/2

Parameterisation

xg(x) = AgxBa(1 — x)% — AL xBa(1 — x)%

xuy(x) = Ay, xBv (1 = x)Co (1 + E, x?)
xdy(x) = Ag,xBav (1 — x)Cav

xU(x) = AgxBo(1 — x)C0(1 + Dyx)
xD(x) = AgxBp(1 — x)%

Constraints
Ag determined by sum rules
Ay, determined by sum rules
Ag, determined by sum rules
Cy =25
BU = BD
Ag = As(1 —fs)



Goodness of fit

Dataset

Partial x2/Number of points

HERA NC e*p DIS, Ep = 920 GeV

447.65/377

HERA NC e"p DIS, Er = 820 GeV 64.99/70
HERA NC e*p DIS, Ep = 575GeV 219.16/254
HERA NC e*p DIS, Ep = 460 GeV 216.58/204
HERA NC e~ p DIS, Ep = 920 GeV 219.88/159

HERA CC e"p DIS, Er = 920 GeV 47.52/39

HERA CC e p DIS, Ep = 920 GeV 51.73/42

HERA linclusive jets 26.38/30

HERA /1l dijets 14.65/16

HERA Il inclusive jets 14.98/24

Shifts of correlated systematics 96.24

Global 2 per degree of freedom

1418.93/1200 = 1.182

HERAPDF2.0 NNLO
HERAPDF2.0Jets NNLO

1363/1131 = 1.205
1614/1348 = 1.197
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