Recent progress in the calculation of the N3LO splitting functions

Giulio Falcioni with F.Herzog,S.Moch,A.Pelloni,J.Vermaseren,A.Vogt

Universität Zürich and Università di Torino

31st International Workshop on Deep Inelastic Scattering, Grenoble - 9th Apr 2024

A forthcoming era of precision physics

The need for N³LO QCD corrections

	<i>Q</i> [GeV]	$\delta\sigma^{\rm N^3LO}$	$\delta(scale)$	δ (PDF-TH)
NCDY	100	-2.1%	$^{+0.66\%}_{-0.79\%}$	$\pm 2.5\%$
$CCDY(W^+)$	150	-2.0%	$^{+0.5\%}_{-0.5\%}$	$\pm 2.1\%$
$CCDY(W^{-})$	150	-2.1%	$^{+0.6\%}_{-0.5\%}$	$\pm 2.13\%$

J. Baglio, C. Duhr, B. Mistlberger, R. Szafron 2022

- N³LO corrections O(%), scale uncertainties sub-percent.
- δ (PDF-TH): Additional error due missing N³LO PDFs. δ (PDF-TH) = $\frac{\sigma^{\text{NNLO}}(\text{NNLO PDF}) - \sigma^{\text{NNLO}}(\text{NLO PDF})}{2}$

PDF evolution to N³LO

$$\mu^2 \frac{d}{d\mu^2} f_{i}\left(x,\mu^2\right) = \int_{x}^{1} \frac{dy}{y} P_{ij}(\alpha_s, y) f_{j}\left(\frac{x}{y},\mu^2\right), \quad i,j = q, g$$

• Flavour non-singlet PDFs

$$q_{\mathsf{ns}}^{\pm} = (f_{\mathrm{i}} \pm f_{\overline{\mathrm{i}}}) - (f_{\mathrm{k}} \pm f_{\overline{\mathrm{k}}}), \qquad \mathrm{i, k = u, d, s}$$

• Flavour-singlet PDFs

$$q_{\mathsf{s}}(x,\mu^2) = \sum_{\mathrm{i=u,d,s}} (f_{\mathrm{i}}+f_{\overline{\mathrm{i}}}), \qquad g(x,\mu^2) = f_g(x,\mu^2).$$

The N³LO evolution requires the four-loop splitting functions.

$$P_{ij}(\alpha_s, x) = \underbrace{a P_{ij}^{(0)}}_{\text{LO}} + \underbrace{a^2 P_{ij}^{(1)}}_{\text{NLO}} + \underbrace{a^3 P_{ij}^{(2)}}_{\text{NNLO}} + \underbrace{a^4 P_{ij}^{(3)}}_{\text{N^3LO}}, a = \frac{\alpha_s}{4\pi}$$

Towards N³LO splitting functions: exact results

- Flavour non-singlet PDFs in the planar limit (Ruijl,Ueda,Vermaseren,Vogt 2017)
- All the P_{ij} in the large-n_f limit (Gracey 1994,1996; Davies,Vogt,Ruijl,Ueda,Vermaseren 2016)
- n_f^2 term in $P_{qq}^{(3)}$ (Gehrmann, von Manteuffel, Sotnikov, Yang 2023)
- n_f^2 term in $P_{gq}^{(3)}$ (**GF**, Herzog, Moch, Vermaseren, Vogt 2023)
- Flavour non-singlet: n_f C_F³ term (Gehrmann,von Manteuffel,Sotnikov,Yang 2023)

See the talk by T.Z. Yang on Thursday!

Approximate results

• The moments of the splitting functions

$$\int_0^1 dx \, x^{\mathsf{N}-1} \, \mathsf{P}_{\mathrm{ij}}^{(\mathsf{N})}(x,\alpha_s) = -\gamma_{\mathrm{ij}}^{(\mathsf{N})}$$

govern the evolution of the moments of the PDFs.

• Approximate N³LO PDFs using the results of a fixed number of moments

(McGowan, Cridge, Harland-Lang, Thorne 2022;

Cridge,Harland-Lang,Thorne 2023 & 2024; Hekhorn,Magni 2023; NNPDF 2024)

Talks by L. Harland-Lang, R. Thorne, J. Rojo, J. Cruz Martinez

Recent progress in the calculation of the N3LO splitting functions \Box Moments of the splitting functions

m(N)

The OPE method (Gross, Wilczek 1974)

Compute the moments from the ϵ -poles of 2-point functions

$$= -\frac{a}{\epsilon} \left(\gamma_{\Psi} + \gamma_{\mathrm{gq}}^{(N)} \right) \xrightarrow{\mathcal{O}_{\mathrm{q}}^{(N)}} + \mathcal{O}(\epsilon^{0})$$

$$\mathcal{O}_{\mathrm{q}}^{(\mathcal{N})}$$
 $\mathcal{O}_{\mathrm{q}}^{(\mathcal{N})}$
 $\mathcal{O}_{\mathrm{g}}^{(\mathcal{N})}$
 $\mathcal{O}_{\mathrm{g}}^{(\mathcal{N})}$

• $\mathcal{O}_{\rm g}^{(N)}\left(\mathcal{O}_{\rm q}^{(N)}
ight)$ are **gauge-invariant** gluon (quark) operators

- Two-point integrals known to 4 loops: Forcer (Ruijl,Ueda,Vermaseren 2017)
- Moments up to N = 16 of the non-singlet splitting functions (Moch,Ruijl,Ueda,Vermaseren,Vogt 2017)

Recent progress in the calculation of the N3LO splitting functions \Box Moments of the splitting functions

Troubles in the singlet sector

- Gauge variant alien operators mix with the physical ones.
- Long time to carry out the two-loop calculation:
 - Basis of aliens at 2 loops (Dixon, Taylor 1974)
 - Result for the physical operators (Hamberg,van Neerven 1991)

Operator structure to four loops

 Systematic construction of the aliens for every fixed N (GF,Herzog 2022)

$$\widetilde{\mathcal{L}} = \underbrace{\mathcal{L}_{0} + c_{g} \, \mathcal{O}_{g}^{(N)} + \mathcal{O}_{EOM}^{(N)}}_{\mathcal{L}_{GGI}} + \underbrace{\mathbf{s'} \left[\overline{c}^{a} \left(\partial^{\mu} A_{\mu}^{a} - \frac{\xi_{L}}{2} b^{a} \right) \right]}_{\text{Gauge fixing + ghost}}$$

$$\begin{split} \mathcal{O}_{\mathsf{EOM}}^{(N)} &= (D^{\mu}F_{\mu})^{a} \left[\underbrace{\eta \, \partial^{N-2}A^{a}}_{\mathcal{O}_{A}^{l}} + g f^{aa_{1}a_{2}} \sum_{i_{1}+i_{2}=N-3} \underbrace{\kappa_{i_{1}i_{2}}(\partial^{i_{1}}A^{a_{1}})(\partial^{i_{2}}A^{a_{2}})}_{\mathcal{O}_{A}^{l}} \right. \\ &+ g^{2} \sum_{\substack{i_{1}+i_{2}+i_{3}\\N-4}} \underbrace{(\kappa_{i_{1}i_{2}i_{3}}^{(1)}f^{aa_{1}z}f^{a_{2}a_{3}z} + \kappa_{i_{1}i_{2}i_{3}}^{(2)}d^{aa_{1}a_{2}a_{3}} + \kappa_{i_{1}i_{2}i_{3}}^{(3)}d^{aa_{1}a_{2}a_{3}})(\partial^{i_{1}}A^{a_{1}})..(\partial^{i_{3}}A^{a_{3}}) + \dots \\ & \underbrace{\mathcal{O}_{A}^{ll}}_{\mathcal{O}_{A}^{ll}} \end{split}$$

- Agreement with general theory (Joglekar, Lee 1974)
- Agreement with explicit results at three loops (Gehrmann,von Manteuffel,Yang 2023).

Quark evolution: quark-to-quark splitting

• Only \mathcal{O}^{I} and \mathcal{O}^{II} mix with **pure singlet** $\gamma_{ps}(N)$

$$\gamma_{
m qq}(N) = \gamma_{
m ps}(N) + \gamma^+_{
m ns}(N)$$

 Results for the first ten moments (N = 20) (GF,Herzog,Moch,Vogt 2023)

• Checks with moments up to N = 12

(Moch,Ruijl,Ueda,Vermaseren,Vogt 2023), large n_f limit (Davies,Moch,Ruijl,Ueda,Vermaseren,Vogt 2016), complete n_f^2 colour factor (Gehrmann,von Manteuffel,Sotnikov,Yang 2023).

Quark evolution: gluon-to-quark splitting

The same approach applied to $\gamma_{
m qg}(N)$

• Results for ten moments (GF, Herzog, Moch, Vogt 2023)

- Agreement with moments up to N = 10 (Moch,Ruijl,Ueda,Vermaseren,Vogt 2021,2023)
- Agreement with the large-*n_f* limit (Davies,Vogt,Ruijl,Ueda,Vermaseren 2016)

Approximations of the splitting functions

Candidate functions matching the moments up to N = 20 and

- Small-x limits
 - Coefficient of $\frac{\log^2 x}{x}$ (Catani, Hautmann 1994)
 - Coefficients of log^k x with k = 6, 5, 4 (Davies,Kom,Moch,Vogt 2022)
- Large-x limits (Soar, Moch, Vermaseren, Vogt 2010; Vogt 2010; Almasy, Soar, Vogt 2011)

•
$$P_{\rm ps}: (1-x)^j \log^k (1-x)$$
 with $k = 4, 3$ and $\forall j \ge 1$

•
$$P_{qg}$$
: $\log^{k}(1-x)$ with $k = 6, 5, 4$
 $(1-x)\log^{k}(1-x)$ with $k = 6, 5, 4$

 $\log^3(1-x) \dots \log(1-x)$ unknown

Recent progress in the calculation of the N3LO splitting functions \Box Approximate N³LO evolution

Approximations of $P_{\rm ps}^{(3)}(x)$

Recent progress in the calculation of the N3LO splitting functions \Box Approximate N³LO evolution

Approximations of $P_{qg}^{(3)}(x)$

Evolution of the quark PDF

$$\dot{q}_{
m s}\equiv \mu^2rac{dq_{
m s}}{d\mu^2}=P_{
m qq}\otimes q_{
m s}+P_{
m qg}\otimes g_{
m s}$$

In the convolution $P(x \rightarrow 0)$ multiplies $f(x \rightarrow 1)$

$$P \otimes f = \int_{x}^{1} \frac{dz}{z} P(z) f\left(\frac{x}{z}\right)$$

Large-x suppression of the PDFs: model PDFs

$$\begin{array}{rcl} x\,g(x) &=& 1.6\,x^{-0.3}\,(\mathbf{1}-\mathbf{x})^{\mathbf{4.5}}\,(1-0.6x^{0.3}),\\ x\,q_{\rm s}(x) &=& 0.6\,x^{-0.3}\,(\mathbf{1}-\mathbf{x})^{\mathbf{3.5}}\,(1+5.0x^{0.8}) \end{array}$$

Recent progress in the calculation of the N3LO splitting functions \Box Approximate N³LO evolution

Example: $P_{
m qq}\otimes q_{
m s}$

Scale evolution of the quark distribution

Stability under variations of the renormalisation scale

$$\Delta_{\mu_r} \dot{q}_{\rm s} = \frac{1}{2} \frac{\max[\dot{q}_{\rm s}(\mu_r^2 = \lambda \mu_f^2)] - \min[\dot{q}_{\rm s}(\mu_r^2 = \lambda \mu_f^2)]}{\operatorname{average}[\dot{q}_{\rm s}(\mu_r^2 = \lambda \mu_f^2)]}, \qquad \lambda = \frac{1}{4} \dots 4$$

Towards QCD evolution to %-level

- The OPE approach allows us to compute efficiently moments up to N = 20 of $P_{qq}(x)$ and $P_{qg}(x)$.
- We constructed approximate N³LO splitting functions
 - Uncertainties grow at small-x.
- Scale evolution of the quark singlet at high precision
 - N³LO corrections below (2 ± 1) % up to $x = 10^{-5}$.
 - Improved scale stability $\lesssim 2\%$ up to $x = 10^{-5}$.

Outlook: P_{gq} New results!

The large- n_f limit features simpler diagrams and fewer aliens

- Calculation of n_f^2 terms to N = 60, only class I aliens.
- Reconstruction of the complete N dependence. (GF,Herzog,Moch,Vermaseren,Vogt 2023)
- Beyond n_f^2 terms \mathcal{O}' , \mathcal{O}'' and \mathcal{O}''' are relevant.
- Results for the moments up to N = 20 ← New! (GF,Herzog,Pelloni,Moch,Vogt 2024)

$$\begin{array}{lll} \gamma^{(3)}_{\rm gq}({\sf N}=2) & = & -16663.2 + 4439.14n_f - 202.555n_f^2 - 6.37539n_f^3, \\ \gamma^{(3)}_{\rm gq}({\sf N}=4) & = & -6565.75 + 1291.01n_f - 16.1462n_f^2 - 0.839763n_f^3, \\ & & \\ & & \\ & & \\ & & \\ \gamma^{(3)}_{\rm gq}({\sf N}=20) & = & -1054.26 + 105.498n_f + 2.39223n_f^2 + 0.199385n_f^3. \end{array}$$

• Checks: moments up to N = 10, large- n_f limit.

Approximate $P_{\rm gq}$ evolution: improving upon N = 10 New!

Approximate P_{gq} at N³LO and convolutions New!

Recent progress in the calculation of the N3LO splitting functions \Box Conclusion and outlook

Thank you!

Recent progress in the calculation of the N3LO splitting functions \Box Convolutions of P_{qg} with the PDFs

Quark singlet evolution: gluon-to-quark contribution

