Measurement of the 1-jettiness Event Shape Observable in Deep-inelastic Electron-Proton Scattering

J. Hessler for the H1 collaboration

31st International Workshop on Deep Inelastic Scattering

Technische Universität München, Max-Planck-Institut für Physik

9.4.2024

MAX-PLANCK-INSTITUT FÜR PHYSIK

Neutral current deep-inelastic scattering

- Process ep
 ightarrow e'X
- Electron or positron scattering

Kinematic variables

- Virtuality of exchanged boson $Q^2 = -q^2 = -(k - k')^2$
- Inelasticity, Bjorken-x and centre-of-mass energy

$$y = \frac{P \cdot q}{P \cdot k}$$
 $Q^2 = x_{Bj} \cdot y \cdot s$

The 1-jettiness event shape observable - Definition

1-jettiness τ_1^b

$$\tau_1^b = \frac{2}{Q^2} \sum_{i \in HFS} \min\{xP \cdot p_i, (q + xP) \cdot p_i\}$$

- Axes: Incoming parton and (q+xP)
- Infrared safe and free of non-global logs
- Sensitive to α_s and parton shower models
- Measurement can be used for MC tuning

Equivalent expressions

• Using momentum conservation

$$au_1^b = 1 - 2\sum_{i \in \mathit{HFS}} \max\{0, rac{q \cdot p_i}{q \cdot q}\}$$

DIS thrust

$$au_1^b = 1 - rac{2}{Q} \sum_{i \in H_C} P_{z,i}^{Breit}$$

Kang, Lee, Stewart [Phys.Rev.D 88 (2013) 054004]

The H1 detector

- Data were taken from 2003 to 2007 (HERA-2)
- Electron (L = 159.6 pb⁻¹) and positron (L = 192.0 pb⁻¹) runs
- $E_e = 27.6$ GeV, $E_\rho = 920$ GeV $\rightarrow \sqrt{s} = 319$ GeV

- Asymmetric design with trackers, calorimeter, solenoid, muon-chambers, forward & backward detectors
- Particles are reconstructed using a particle flow algorithm
 → Combining cluster and track information without
 double-counting of energy

The 1-jettiness event shape observable - Intuition

1-jettiness:
$$\tau_1^b = \frac{2}{Q^2} \sum_{i \in HFS} \min\{xP \cdot p_i, (q + xP) \cdot p_i\}$$

Visualisation of the 1-jettiness with event displays

- DIS 1-jet configuration
- Most HFS particles collinear to scattered parton \rightarrow Small τ^b_1
- \rightarrow 1-jettiness defined for every DIS event
- \rightarrow All particles can contribute, no jet clustering!

- Dijet event
- More and larger contributions to the sum over the HFS \rightarrow Large τ^b_1

DIS thrust - a 4π observable

- All particle candidates in all DIS events contribute $\left(\tau_1^b = 1 \frac{2}{Q} \sum_{i \in \mathcal{H}_C} P_{z,i}^{Breit}\right)$
- Normalised contribution to τ_1^b for different ranges in polar angle ϑ and energy

- Mainly tracks and clusters in the central part of the detector contribute ($25^\circ < \vartheta < 153^\circ$)
- Mainly particles with high energy contribute ($E>1~{
 m GeV}$)
 - \Rightarrow Well measured particles dominate in τ_1^b

Single differential cross section

1-jettiness cross section

- Data unfolded using TUnfold
- Correct for QED radiation and electro-weak effects
- Resulting cross section reported for e^-p and e^+p collisions

Comparison with MC models

- Compare data to 15 different models
- δ -distribution at $\tau_1^b = 1$
 - \rightarrow Events with empty current hemisphere
 - \rightarrow Dedicated talk by Zhiqing
- Cross sections are measured at high precision

 \rightarrow None of the MC models works perfectly, now have precision data for tuning

 \rightarrow Exact QCD predictions have sizeable scale uncertainties and large hadronization corrections

Large cross section and sizeable data \rightarrow Triple-diff. cross sections as a function of Q^2, y, τ^b_1

Triple differential measurement

- Investigate change in shape of the distribution
- Integral over the τ_1^b distribution results in inclusive DIS cross section

3D cross sections

- increasing Q^2
 - \rightarrow Peak moves to lower τ \rightarrow Tail region lowers
- Increasing y
 - ightarrow au = 1 becomes enhanced
- Reasonable description by various models
 - \rightarrow Study ratio to data for better comparison

Uncertainties

- Stat. uncertainties of a few to O(10%)
- Syst. uncertainties are in the range of 5-10%

MC comparison

- Ratio to Sherpa 3
- Fixed order calculations provide satisfactory description in region of validity
- Comparison to other MC predictions included in backup

Integrate over τ_1^b distribution \rightarrow Inclusive DIS cross section

- Cross sections for e^-p and e^+p collisions
- Compare the data to fixed order calculations at NNLO and approximate N3LO accuracy
 - \rightarrow Excellent agreement between data and predictions
- Cross check validates τ_1^b measurement

Summary

A first measurement of the 1-jettiness event shape observable in NC DIS was presented

- Defined for every NC DIS event
- Every particle candidate can contribute

Cross section measurement

- \bullet Presented single differential cross sections and in bins of y and Q^2
- Reasonable description of the data by multiple models
- Integrating over τ^b_1 results in DIS cross section
- Full publication available at arXiv:2403.10109v1 More H1 event shape results in Henry's talk

Backup

Backup

Comparison of data to

- Pythia 8.3
- Pythia 8.3 + Vincia Parton Shower
- Pyhtia 8.3 + Dire Parton Shower
- Powheg + Pythia

Ratio to Sherpa 3

- First bin overestimated by MC models
- Good agreement in peak region
- Smaller dependence on PS model at higher τ_1^b

Comparison of data to

- Herwig 7.2
- Herwig 7.2 Merging
- Herwig 7.2 Matchbox

Ratio to Sherpa 3

• Overestimates data at medium τ^b_1 and small Q^2

Comparison of data to

- Sherpa 3
- Sherpa 2 (Cluster)
- Sherpa 2 (String)

Ratio to Sherpa 3

- Best description by Sherpa 3
- Effect of different hadronization model is small

Comparison of data to

- Djangoh
- Rapgap
- KaTie+Cascade (Set 1)
- KaTie+Cascade (Set 2)

Ratio to Sherpa 3

- Reasonable description of the data by Rapgap and Djangoh
- Good description of data at low τ_1^b by KaTie+Cascade but fail to describe tail region

