

Neutrinos at the LHC – Results from FASER

Jeremy Atkinson (Universität Bern) on behalf of the FASER Collaboration 9th of April 2024, DIS2024, Grenoble

ForwArd Search ExpeRiment

- Small experiment based at the LHC at CERN, taking data throughout Run 3 (2022 2025).
- Light, long-lived, weakly-interacting particles are produced in the far-forward region of 13.6 TeV proton-proton collision at the ATLAS collision point (IP1).
- The detector is aligned with the collision axis line-of-sight, maximising both the number and energy of neutrino interactions of all 3 flavours.
- First collider neutrino experiment!
 - First neutrino interaction candidates at the LHC [Phys. Rev. D 104, L091101 (2021)].
 - First direct observation of v_{μ} CC interactions at the LHC [<u>Phys. Rev. Lett. 131, 031801 (2023)</u>].

The FASER Detector

• The detector is composed of both spare parts from other experiments as well as new dedicated components. Front Scintillator veto system

Neutrinos at FASER

- The decay of hadrons produced in the forward region produces a collimated neutrino beam.
- >10 000 neutrinos expected to interact in FASER throughout Run 3 (250 fb⁻¹).
- 3-flavour cross-section measurement for previously unexplored energy range \rightarrow highest E_v from artificial source.
- Expect $\mathcal{O}(1000)$ events via charm production channels \rightarrow neutrino induced heavy quark production.
- For more on neutrino DIS with FASER, see Juan Rojo's talk on 09/04: "<u>Deep-inelastic scattering with collider neutrinos at the LHC and beyond</u>"

For 250 fb ⁻¹	$v_e + \overline{v}_e$	$ u_{\mu} + \overline{\nu}_{\mu} $	$\nu_{\tau} + \overline{\nu}_{\tau}$
Main source	Kaon/Charm decay	Pion/Kaon decays	Charm decay
N ^o expected CC events in FASERv	~ 1700	~ 8500	~ 30

arXiv:2402.13318

Jeremy Atkinson, Universität Bern

The FASERv Detector

- Module: 730 alternating FASERv emulsion films and 1.1 mm thick tungsten plates (25 x 30 cm²).
- Target mass 1.1 tonnes; 1.1 m (220 X₀, 8λ).
- 3 modules irradiated each year to keep track occupancy < 10⁶/cm² (around 30fb⁻¹).
- Temperature kept constant at 0.1°C level with dedicated cooling system.
- Position can be adjusted to compensate for changing ATLAS IP crossing angle.
- Neutrino events can be flavour tagged using topological and kinematical variables.

73 sub-modules installed

FASERv Process

FASERv Assembly and Development

- FASERv sub-modules: 10 alternating emulsion films and tungsten plates.
- Pressure is applied to keep the alignment between sub-modules inside the FASERv module.
- Development campaign lasts \sim 12 days.
 - Films are extracted and labelled.
 - 200 films developed every 3 days.
 - 25 films developed together \rightarrow 3.5 hours + 1 day dry.

Stopper Ultrasonic Developer Fixer x3 Wash 1 x3 Wash 2 x3 Drywel

FASERv Performance

- Position resolution is determined using the position displacement between a hit and the linear fit of a track.
- Hit resolution ~ 300 nm after dedicated film alignment using highmomentum muon tracks ($\mathcal{O}(10^5)$ tracks/cm²).
- Angular resolution for track of length $\sim 1 \text{ cm}$ is $\sim 0.04 \text{ mrad}$.
- Angular spread of muon peaks ~ 0.4 mrad.

Kinematical measurements

- Particle momenta calculated using Multiple Coulomb ٠ Scattering (MCS) via the Coordinate Method (works well even > 1 TeV).
- Muon momentum: $\Delta P^{RMS}/P \approx 0.3$ at 200 GeV.

- EM shower energy found using track multiplicity. •
- Reconstructed electron energy: $\Delta E/E \approx 0.25$ at 200 GeV. •

New FASERv Analysis

- Data set:
 - 2022 second module \rightarrow 9.5 fb⁻¹;
 - Target mass: 128.6 kg;
 - \sim 1.7% of data collected to date.
- Selection criteria:
 - Vertex reconstruction:
 - $N_{track} \ge 5$
 - $N_{track}(tan\theta \le 0.1) \ge 4$
 - Lepton requirements:
 - E_e or p_µ > 200 GeV
 - $tan\theta_e$ or $tan\theta_\mu > 0.005$
 - Back-to-back topology: $\Delta \phi > 90^{\circ}$

Results from FASERv: Neutral Hadron Study

- Detected neutral vertices before highenergy lepton selection are dominated by neutral hadron interactions.
- Validation study: interactions occurring in 150 tungsten plates → target mass = 68.2 kg.
- Expectation: 246 vertices $(K_s, K_L, n, \overline{n}, \Lambda, \overline{\Lambda} \text{ interactions}).$
- Data: 139 vertices detected.
- Lies within 50% uncertainty.

Background source

v_e events

- $E_e = 1.5$ TeV, highest v_e energy measured!
- MC normalized to number of observed events.

v_{μ} events

- $p_{\mu} = 360 \text{ GeV}.$
- MC normalized to number of observed events.

Results from FASERv: v_{μ} and v_{e} events!

- First observation of v_e at the LHC!
- First neutrino cross-section measurement in the TeV range!

arXiv:2403.12520!!!

Significance

5.2σ

5.7σ

Observed

4

8

Interaction

v_e CC

v_{II} CC

Expected

background

 $0.025^{+0.015}_{-0.010}$

 $0.22^{+0.09}_{-0.07}$

Expected

1.1 - 3.3

6.5 - 12.4

signal

- Measurement relative to theoretical curve.
- Uncertainty dominated by neutrino flux.

DIS2024 09/04/2024

Jeremy Atkinson, Universität Bern

Summary

- The FASER measures TeV-scale neutrinos of all 3 flavours \rightarrow First collider neutrino experiment!
- FASER is successfully operating during CERN LHC Run 3.
- 5 FASERv modules have been irradiated, collecting 60 fb⁻¹ to date, with another 180 fb⁻¹ expected in Run 3 → 6th module currently installed.
- New results from FASERv presented \rightarrow First Measurement of the v_e and v_µ Interaction Cross Sections at the LHC with FASER's Emulsion Detector!
- Physics results with FASERv demonstrate the ability to carry out neutrino measurements with emulsion-based detectors in the challenging conditions at the LHC → a lot more physics to come...

Looking to the future:

- FASER in Run4 approved;
- Forward Physics Facility (FPF) at CERN → planned project to build new experimental cavern in the HL-LHC era for an improved physics programme, including FASER2 and FASERv2

Backup

DIS2024 09/04/2024

Jeremy Atkinson, Universität Bern

FASER detector

FASER Operations

- Successful running in 2022 and 2023.
- Recorded 97% of delivered luminosity \rightarrow > 65 fb⁻¹.
- FASERv module exchanged twice due to occupancy in emulsion.
- Example event: muon leaving track in full detector
 → all detector components working well.

Film production

- Emulsion gel and films produced at Nagoya University in dedicated facility.
- Silver bromide crystals, diameter 200 nm.
- 110 m² of emulsion for every module.
- Resetting procedure performed in Nagoya University and Kyushu University.

DIS2024 09/04/2024

Jeremy Atkinson, Universität Bern

Emulsion Facility at CERN

- New facility set up at CERN for emulsion experiments

 includes modern climate control and ventilation
 system, access card entry, and full dark room
 capabilities for emulsion handling.
- 3 dedicated room: assembly, development and drying.
- Shared with NA65/DsTau, SND@LHC and SHiP Collaborations.
- Darkroom operations: module assembly and development.

FASERv Assembly at CERN

- FASERv sub-modules: 10 alternating emulsion films and tungsten plates.
- 2 dedicated assembly tables for parallel assembly.
- Pressure is applied to keep the alignment between sub-modules inside the FASERv module.

73 sub-modules installed

FASERv Exchange

- Irradiated module extracted, and new module installed.
- Performed by FASER members with CERN technical teams.

Development

- FASERv module disassembly is performed in darkroom conditions by 2 people.
- 5 sub-modules (50 films) are extracted, disassembled, labelled and sorted into 2 packs of 25 films → Odd and Even films are separated and are developed in different batches of chemicals.
- Labelling is performed using a digital label maker.

Development

- 730 FASERv films in one FASERv module.
- 200 FASERv films \rightarrow one cycle.
- 25 FASERv films hung using clips per rack
 → one chain.
- 4 cycles of 9 chains → each cycle takes approximately 3 days.
- Can have 3 chains going in parallel with around 25 minute shift.
- Approximately same number of films per chain in sets of 3 chains.
- Odd and Even films from the same submodule are never developed in the same cycle.

Cycle	Day 1	Day 2	Day 3
08:00			
09:00	Chemical		
10:00	preparation		
11:00	preparation		3 chains
12:00			
13:00		6 chains	
14:00	Test		
15:00	Development		Chemical
16:00			disposal
17:00			
18:00			
19:00			

]	Solution	Time	Nº tanks
	Developer	20 minutes	1
	Stopper	10 minutes	1
	Fixer	1 hour	3
	Wash 1	1 hour	3
	Wash 2	1 hour	3
	Drywell	10 seconds	1
	Total	3.5 hours + 1 day drying	

Film Readout in Nagoya

Hyper Track Selector (HTS): complex microscope system scans films for digital readout.

- Images made at different focal depths in emulsion;
- 5.1 x 5.1 mm² field of view;
- Each film scanned in 8 zones;
- 60 80 minutes for each film.

Module temperature control

- Temperature of the FASERv module is kept constant at 0.1°C level with dedicated cooling system.
- Water in heat exchanger is kept at 15°C, and a fan system mixes the air in the FASERv trench, with a slanted perforated plate which helps further mix the air on all sides of the module.
- An insulating layer is placed between the FASERv module and rest of FASER, and the trench is closed with an insulated metal cover → this is to ensure temperature stability which both increases alignment and minimises the fading effect of emulsion, as well as to understand the long-term properties.
- 4 temperature sensors are placed in and around the module to monitor the temperature.

FASERv Event Reconstruction

- Dedicated film alignment is performed using high-momentum muon tracks ($\mathcal{O}(10^5)$ tracks/cm²).
- Track reconstruction links base-tracks on different films using position and angular information.
- Single film hit efficiency if found by considering whether a selected film has a hit given that 2 films either side have hits → observed efficiency > 90%.

Event Topology

- Neutrino events can be flavour tagged using topological and kinematical variables:
 - $v_e \rightarrow$ outgoing electron initiating an EM shower;
 - $v_{\mu} \rightarrow$ outgoing muon (identified by track length);
 - $v_{\tau} \rightarrow$ tau lepton decay.
- For CC events, expect a back-to-back topology between lepton and hadrons in x-y plane → Δφ.

Shower Energy Measurement

- Performed by counting number of segments within a cylinder along an electron candidate → shower maximum has the highest number of segments.
- Background segments are sizable \rightarrow cylinder size limited to r = 100 µm, length = 8 cm; segment angle with respect to shower axis < 10 mrad; minimum distance to segment < 50 µm.
- Average background estimated by using random cylinders and subtracting from the shower before energy estimation.

Shower Energy Measurement .

DIS2024 09/04/2024

Jeremy Atkinson, Universität Bern

FASERv v_e candidate event

FASER Expected Sensitivity

FASER expected sensitivity

• Inner error bars: statistical uncertainties.

[•] Outer error bars: uncertainties from neutrino production rate.

Neutrino Flux at FASER

- Neutrinos are produced from the decay of light and charm hadrons.
- Light hadron production is generated using EPOS-LHC.
- Charm hadron production is generated using POWHEG + Pythia 8.3.
- Charm hadrons produce ν_{τ} , high-E ν_{μ} , $\nu_e \rightarrow$ by deconvolving charm contribution, this can help constrain neutrino flux.

Run 3 FASER Simulation

 $v_{\mu} + \bar{v}_{\mu}$

 $v_{\mu} + \bar{v}_{\mu}$ $v_{\tau} + \bar{v}_{\tau}$

10

Neutrino Flux at FASER

Jeremy Atkinson, Universität Bern

Generator flux uncertainty

- Uncertainties for neutrinos from light hadron production come from spread of generators.
- Uncertainties for neutrinos from charm hadron decays come from varying internal parameters of charm hadron production by factor 2.
- Total uncertainty in the high-E range dominated by charm production.

Heavy-flavour-associated channels

- Measure charm production channels:
 - ~10% v CC event → O(1000) events via charm production channels expected;
 - 1^{st} measurement of v_e induced charm production;
 - Can be observed in FASERv due to secondary charm decay vertex.

$$\frac{\sigma(\nu_{\ell}N \to \ell X_c + X)}{\sigma(\nu_{\ell}N \to \ell + X)} \qquad l = e, \mu$$

- Search for Beauty production channels
 - Expected SM events (v_µCC) $\mathcal{O}(0.1)$ in Run 3 \rightarrow CKM suppression $V_{ub}^2 \approx 10^{\mu_5}$.
 - BSM physics could amplify, such W' boson, charged Higgs boson, TeV scale leptoquark.

FASER "Electronic" Neutrino Search

- Selection criteria:
 - Collision event in good data periods (35.4 fb⁻¹);
 - No signal in front 2 veto scintillators (<40 pC);
 - Signal in last 2 veto stations (>40 pC);
 - Signal in timing and pre-shower scintillators consistent with >= 1 MIP;

- Exactly 1 good spectrometer track with p > 100 GeV;
- r_{max} < 95 mm in fiducial tracking volume;
- Extrapolating to front veto station, r < 120 mm;
- θ < 25 mrad.

- 151 ± 41 neutrino events expected from simulation:
 - Uncertainty from difference between generators (DPMJET & SIBYLL).
 - No experimental errors were included.

Background estimation

- <u>Neutral hadrons 0.11 ± 0.06</u>:
 - Expect approx. 300 with E > 300 GeV;
 - Tungsten absorbs the majority;
 - Estimated from 2-step simulation.
- <u>Scattered muons 0.08 ± 1.83:</u>
 - Extrapolated from sideband control region;
 - Single track in the front tracker station;
 - Scaled to full detector volume using simulation.
- <u>Veto inefficiency negligible:</u>
 - Estimated from events where only 1 veto scintillator fired;
 - Very high veto efficiency.

Results

- **153**⁺¹²₋₁₃ neutrino events observed.
- Corresponds to **16o**.
- First direct observation of collider neutrinos.

Category	Event
Signal (n _o)	15
n ₁₀	4
n ₀₁	6
n ₂	64014695

DIS2024 09/04/2024

Jeremy Atkinson, Universität Bern