First results from the SND@LHC experiment

Onur Durhan on behalf of SND@LHC collaboration

Middle East Technical University, Atilim University

XXXI International Workshop on Deep Inelastic Scattering 8-12 April 2024 Maison MINATEC, Grenoble, FRANCE

April 6, 2024 DIS 2024, Grenoble

O.Durhan (METU, Atilim University)

Physics Programme

• Neutrino Interactions

- Detect neutrino interactions in unexplored TeV energy range
- Measure NC/CC ratio as internal consistency check.
- Large yield of ν_{τ} will be more than double existing data.
 - About 20 events observed by DONuT and OPERA

• Heavy flavour physics

- 90 % of ν_e and $\overline{\nu}_e$ produced in SND@LHC come from charmed hadron decays. This provides opportunities to:
 - Measure $pp \rightarrow \nu_e X$ cross section.
 - Measure forward charm production through neutrinos.
 - Constrain gluon PDF at very small x.

• Lepton Universality Test (LFU)

 The identification of three neutrino flavours in the SND@LHC detector offers a unique possibility to test the Lepton Flavor Universality (LFU).

Beyond Standard Model

• SND@LHC experiment can probe into large variety of Beyond Standard Model (BSM) scenarios describing Hidden Sector.

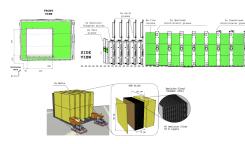
O.Durhan (METU, Atilim University)

DIS 2024, Grenoble

Scattering and Neutrino Detector @ LHC

Veto system

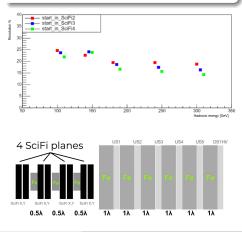
- 2+1 planes of stacked scintillator bars. (Additional vertical plane installed in 2024)
- Rejects charged particles entering the detector volume


Target, Vertex detector and ECAL

- 830 kg target made of tungsten.
- 5 walls with 4 Emulsion bricks
- Five scintillating fibre stations serve as ECAL, timestamp of vertices
- 84 X₀, 3 λ_{int}

HCAL and MUON system

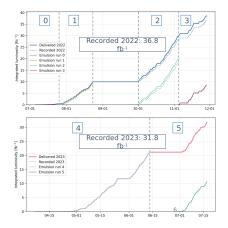
- Eight plastic scintillator planes interleaved by 20 cm thick Fe blocks
- Last 3 downstream planes with higher granularity to track muons $9.5\lambda_{int}$



August 2023 Test Beam

- Test beam for hadronic energy calibration has been done in 2023.
- Exact same replica of HCAL together with downsize target

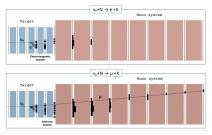
The resolution of hadronic energy is within 15-25 %



4 / 20

Data Taking and Event Reconstruction

- Recorded lumi of pp collisions in 2022 and 2023 data taking campaigns: 68.6 fb⁻¹
 - Uptime of 97 %
- Emulsion wall extraction after few months of exposure.
 - Keep integrated tracks at a reasonable level later for analysis.
 - Scanning done in parallel in different laboratories after chemical development.


Data Taking and Event Reconstruction

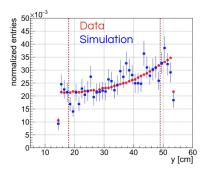
Two phases of event reconstruction

• Online with Electronic Detectors

- Identify signal candidates (neutrino or FIPs)
- Tag muons (muon system)
- Energy reconstruction through ECAL+HCAL

• Offline with Emulsion Detectors

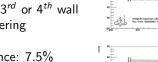
- Reconstruct vertices within micrometric resolution.
- Match vertices with electronic data, get timestamp, reconstructed energy

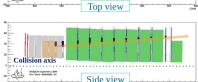


Measurement of the muon flux at the SND@LHC experiment (Eur. Phys. J. C (2024) 84: 90)

- Muons from IP1 constitute the major background source for SND@LHC.
- Dedicated muon flux measurement has been conducted.

System	Muon flux $([10^4 fb/cm^2])$
SciFi	$2.06 \pm 0.01(\textit{stat.}) \pm 0.12(\textit{sys.})$
DS	$2.02 \pm 0.01 (\textit{stat.}) \pm 0.08 (\textit{sys.})$


Observation of Collider Muon Neutrinos with the SND@LHC Experiment (Phys.Rev.Lett. 131 (2023) 3, 031802)


Event Selection

- Fiducial Volume
 - Neutral vertex 3rd or 4th wall
 - Reject side-entering backgrounds
 - Signal acceptance: 7.5%

• ν_{μ} identification

- Large ECAL and HCAL activity
- Single muon track associated to the vertex
- Signal selection efficiency: 36%

ν Simulation

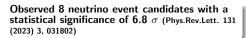
Collision axis

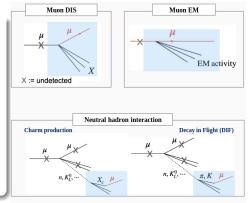
- Neutrino Production : DPMJET
- Particle Transportation to SND@LHC: FLUKA
- Neutrino Interaction: GENIE

Number of ν_{μ} CC events expected in 36.8 fb^{-1} after cuts: 4.2

DIS 2024, Grenoble

Observation of Collider Muon Neutrinos with the SND@LHC Experiment (Phys.Rev.Lett. 131 (2023) 3, 031802)


Backgrounds:


i. Passing through muons

- Incoming muon track might be missed due to veto inefficiency.
- Shower induced by DIS or EM activity.
- Number of muons in acceptance: 5 × 10⁸
- Detector inefficiency: 5 × 10⁻¹².
- Negligible background with tight fiducial cuts.

ii. Neutral hadrons

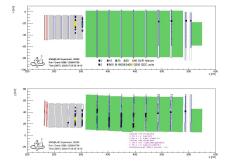
- Neutral hadrons produced in muon DIS with surrounding material.
- Expect a total of $(8.6 \pm 3.8) \times 10^{-2}$ background events due to neutral hadrons

O.Durhan (METU, Atilim University)

DIS 2024, Grenoble

9/20

ν_{μ} Analysis Update

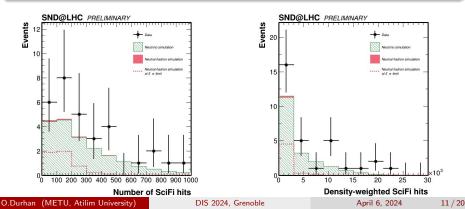

The search for ν_{μ} interactions is updated with extended fiducial volume and inclusion of 2023 data, results to be published.

Event Selection

- Fiducial Volume
 - Reject only vertices in the first wall
 - Reject side-entering backgrounds
 - Signal acceptance: 18%

• ν_{μ} identification

- Large ECAL and HCAL activity
- Single muon track associated to the vertex
- Signal selection efficiency: 36%



Updated ν_{μ} Search

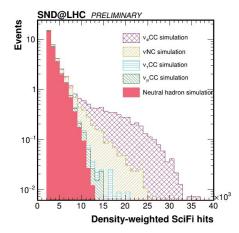
- Number of events expected in 68.6 *fb*⁻¹ with extended fiducial volume
 - Signal: 19.1 ± 4.1
 - Neutral hadrons: 0.25 ± 0.06

Number of events observed: 32

Updated ν_{μ} Search

Kinematics of muon neutrino candidates are in agreement with the signal prediction.

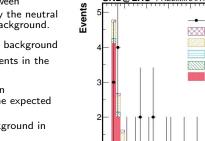
Search for 0μ Events

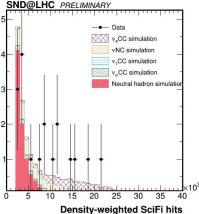

Search for shower-like events accounting for signal ν_e CC and NC interactions is ongoing.

Fiducial volume

- No hits in the veto detector.
- Reject side-entering events
- Signal acceptance: 12 %

Signal Identification

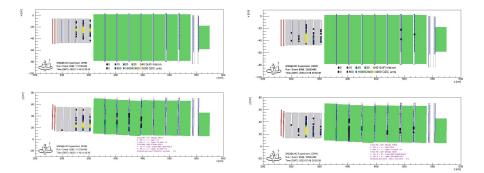

- Large ECAL+HCAL activity
- No tagged muons
- Optimized Density-weighted number of hits in the most active station to maximize expected significance
- Signal selection efficiency: 42 %



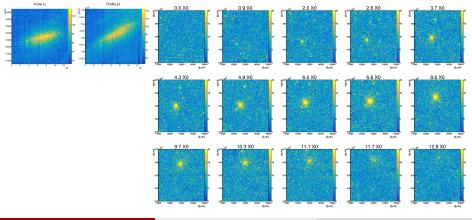
Introduce control region (between)

Search for 0μ Events

- 2×10^3 -5 $\times 10^3$) dominated by the neutral background to measure the background.
- Scale the number of expected background to the number of observed events in the control region.
 - Observed neutral hadron background is 1/3 of the expected value.
- Expected neutral hadron background in the signal region:0.01
- ν_{μ} CC interactions are the dominant background, expected:0.12
- Expected background from ν_{τ} CC interactions 0 07
- Total expected background: 0.20 ± 0.11 events
- Expected signal: 4.66 events



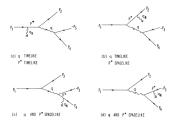
Search for 0μ Events



Observed: 6 events with 4.7 σ significance

Search for $\nu_e CC$ with Emulsion Data

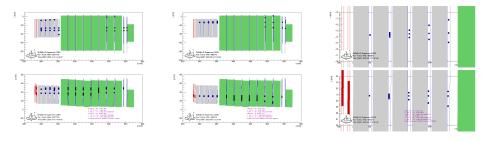
- Signal: Isolated shower pattern with neutral vertex.
- EM showers were identified, association with neutral vertices is ongoing.


DIS 2024, Grenoble

April 6, 2024

16 / 20

Search for Multi Muon Events


Two types of μ^3 events

- A: Three tracks almost parallel
- B: Incoming tracks, vertex in the target, three outgoing tracks
- Possible explanations:
 - $\mu^{\pm} + N \rightarrow \mu^{+}\mu^{-}\mu^{\pm} + N$ (The genuine trident)
 - $\mu^{\pm} + N \rightarrow \mu^{\pm} + N + \gamma, \gamma + N \rightarrow N + \mu^{+}\mu^{-}$ (muon brems followed by γ conversion)

[Russell, J. J., Sah, R. C., Tannenbaum, M., Cleland, W. E., Ryan, D. G., & Stairs, D. G. (1970). Observation of Muon Trident Production in Lead and the Statistics of the Muon*. PhysRevLett.26.46]

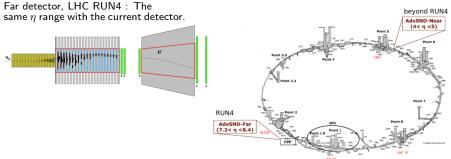
 μ^3 Events

A: Interaction outside target

B: Vertex inside target

B: Vertex inside target zoomed

Improved HCAL and timing detectors


۰

•

Future Upgrades: AdvSND

Vertex detector with Si detector

Iron core magnetic spectrometer identify ν_{μ} and $\overline{\nu}_{\mu}$

Near detector, beyond LHC RUN4: Smaller η range to reduce systematic uncertainities in the charm production

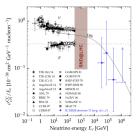
Summary

- SND@LHC is running successfully since the start of LHC RUN3.
- Dedicated background study has been done together with the measurement of the muon flux.
- First observation of neutrinos produced in pp collisions
- 32 ν_{μ} CC interactions have been observed together with 2023 data, yet to be published.
- 0μ neutrino events were observed, results will be published soon.
- Search for Multi Muons and Muon DIS are also being studied.
- New era of LHC neutrino experiments has begun !

Back up slides

O.Durhan (METU, Atilim University)

DIS 2024, Grenoble

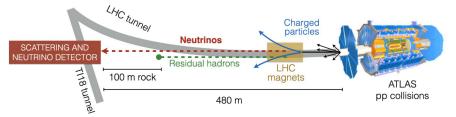

April 6, 2024

20 / 20

Neutrinos at LHC

- The physics potential of neutrino experiments at the LHC was acknowledged in the early 1980s.
- Large neutrino fluxes in forward region from pp collisions
- The highest energy human-made neutrinos
- High neutrino energy and thus larger interaction cross section $(\sigma_{\nu} \propto E_{\nu})$
- All three neutrino flavours can be observed at the LHC with a small-scale experiment
- Unexplored energy domain $E_{
 u} \in [10^2, 10^3]$ GeV
- Currently, two neutrino experiments are operating at LHC IP1:
 - SND@LHC, off-axis, enhances neutrino flux from charm production, 7.2 $< \eta < 8.4$
 - FASER ν , on-axis, $\eta > 9$, enchances statistics

Def Palaniag Impo 4 agrees 10000 rates Impo 4 agrees 10000 rates Impo 4 agrees 10000 rates Physics potential of an experiment using LHC neutrinos

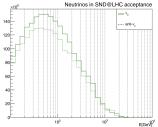


024

Scattering and Neutrino Detector @ LHC

- The detector is located in the TI18 tunnel former transfer line from SPS to LEP
 - 480 m away from the ATLAS interaction point (IP1)
 - Covering pseudo rapidty range 7.2 $<\eta<$ 8.4
 - Shielded by 100 m rock
- LHC magnet deflects charged particles
- Neutrinos and FIPs interact in the detector

Data Taking and Event Reconstruction



- SND@LHC is operating since the start of LHC RUN3
- Successful data-taking campaings in 2022 and 2023

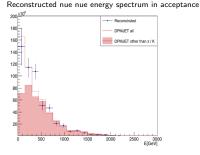
Neutrino Interactions

Neutrino interactions

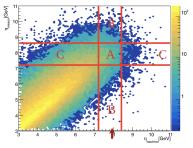
- Measure neutrino interactions in unexplored TeV energy scale
- Measuring NC/CC ratio
- The NC/CC ratio in case of DIS can be written as

$$P = \frac{1}{2} \left\{ 1 - 2\sin^2\theta_W + \frac{20}{9}\sin^4\theta_W - \lambda(1 - 2\sin^2\theta_W)\sin^2\theta_W \right\}$$

• P measurement used as an internal consistency check


	Neutrinos in acceptance		CC neutrino interactions		NC neutrino interactions			
Neutrino flavour	$\langle E \rangle$ [GeV]	Yield	$\langle E \rangle$ [GeV]	Yield	$\langle E \rangle$ [GeV]	Yield		
ν_{μ}	120	$3.4 imes 10^{12}$	450	1028	480	310		
ν _e	125	$3.0 imes 10^{12}$	480	419	480	157		
ν_{τ}	300	$4.0 imes 10^{11}$	760	292	720	88		
$\bar{\nu}_{\mu}$	230	$4.4 imes 10^{11}$	680	158	720	58		
$\bar{\nu}_e$	400	$2.8 imes 10^{10}$	740	23	740	8		
$\bar{\nu}_{\tau}$	380	$3.1 imes 10^{10}$	740	11	740	5		
TOT		$7.3 imes 10^{12}$		1930		625		

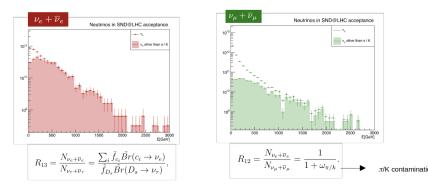
Physics Motivation



Heavy Flavour Physics

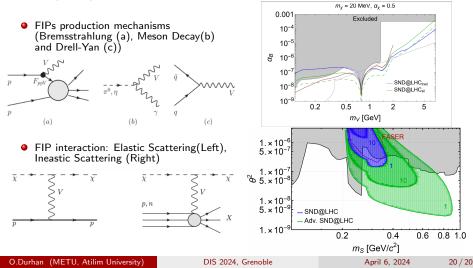
- 90 of ν_e and ν_e produced SND@LHC come from charmed hadron decays. This provides opportunities to:
 - Measure $pp \rightarrow \nu_e X$ cross section.
 - Measure forward charm production through neutrinos
 - Constrain gluon PDF at very small x

Correlation between pseudo-rapidity of the (anti-) electron neutrino and the parent charmed hadron



Physics Motivation

• Lepton Flavor Universality Test (LFU)


• The identification of three neutrino flavours in the SND@LHC detector offers a unique possibility to test the Lepton Flavor Universality(LFU).

Physics Motivation

SND@LHC experiment can probe into large variety of Beyond Standard Model (BSM) scenarios describing Hidden Sector

