Extraction of Meson PDFs from Drell-Yan and J/ψ Production Data in the Statistical Model

Jen-Chieh Peng

University of Illinois at Urbana-Champaign

In collaboration with Claude Bourrely (Marseille), Franco Buccella (Rome), and Wen-Chen Chang (Taipei)

Partonic structures of pion and kaon

Why is it interesting?

- Lightest $q\bar{q}$ bound states, and Goldstone bosons
- A simpler hadronic system than the nucleon
- Mass decomposition of pion and kaon
- Spin-0 π and K contrasting spin-1/2 nucleon
- Compared to nucleons, very little is known experimentally for the partonic structures of mesons

Partonic structures of pion and kaon

Spin-0 for π and K implies:

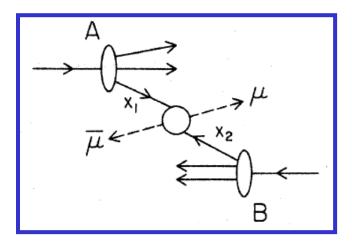
- No helicity distributions ($\Delta q(x) = 0$, $\Delta G(x) = 0$)
- No TMDs such as Transversity, Sivers, Prezelocity distributions (Boer-Mulders functions for π and K do exist)

Number of unpolarized partonic distributions is reduced from symmetry consideration (charge-conjugation and SU(2) flavor symmetries)

•
$$u_{\pi^{+}}^{V}(x) = \overline{d}_{\pi^{+}}^{V}(x) = \overline{u}_{\pi^{-}}^{V}(x) = d_{\pi^{-}}^{V}(x) \equiv V_{\pi}(x)$$

•
$$\overline{u}_{\pi^{+}}(x) = d_{\pi^{+}}(x) = u_{\pi^{-}}(x) = \overline{d}_{\pi^{-}}(x) \equiv S_{\pi}(x)$$

For kaons, more PDFs are needed (breaking of SU(3) flavor symmetry)


- $u_{K^+}^V(x) \neq \overline{s}_{K^+}^V(x)$ (analogous to $u_p^V(x) \neq d_p^V(x)$)
- $\overline{u}_{K^+}(x) \neq \overline{d}_{K^+}(x)$ (analogous to $\overline{u}_p(x) \neq \overline{d}_p(x)$)

Many interesting questions can be raised on the comparison between pion and kaon parton distributions

Meson partonic content from the Drell-Yan Process

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
(Received 25 May 1970)

$$p + p - (\mu^+ \mu^-) + \cdots$$
 (1)

Our remarks apply equally to any colliding pair such as (pp), $(\bar{p}p)$, (πp) , $(\gamma \rho)$ and to final leptons $(\mu^+\mu^-)$, $(e\bar{e})$, $(\mu\nu)$, and $(e\nu)$.

(4) The full range of processes of the type (1) with incident p, \overline{p} , π , K, γ , etc., affords the interesting possibility of comparing their parton and antiparton structures.

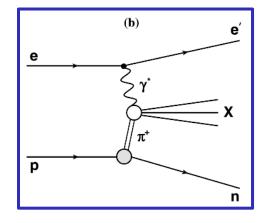
List of Drell-Yan experiments with π^- beam

Experiments at CERN and Fermilab

Exp	P (GeV)	targets	Number of D-Y events
WA11	175	Be	500 (semi-exclusive)
WA39	40	W (H ₂)	3839 (all beam, M > 2 GeV)
NA3	150, 200, 280	Pt (H ₂)	21600, 4970, 20000 (535, 121, 741)
NA10	140, 194, 286	$W(D_2)$	~84400, ~150000, ~45900 (3200,, 7800)
E331/E444	225	C, Cu, W	500
E326	225	W	
E615	80, 252	W	4060, ~50000

- Relatively pure π^- beam; J/ Ψ production also measured
- Relatively large cross section due to $\overline{u}d$ contents in $\pi_{\overline{5}}$

For a very long time, only four pion parton distribution functions were available


- First: OW-P (PRD 30, 943 (1984)
- Second: ABFKW-P (PL 233, 517 (1989))
- Third: GRV-P (Z. Phys. C53, 651 (1992)
- Fourth: SMRS (PR D45, 2349 (1992))
- Need new global fits to all existing data
- Need new experimental data with pion and kaon beams

First Monte Carlo global QCD analysis of pion parton distributions

P. C. Barry, N. Sato, W. Melnitchouk, and Chueng-Ryong Ji

JAM Collaboration

PRL 121, 152001 (2018); PRL 127, 232001 (2021)

- Drell-Yan data from NA10 and E615
- Leading-neutron tagged DIS from HERA provides information on the pion PDFs at small *x*
- The Q^2 evolution allows extraction of gluon distribution
- Uncertainties of the pion PDFs are determined

PHYSICAL REVIEW D **102**, 014040 (2020)

Parton distribution functions of the charged pion within the xFitter framework

```
Ivan Novikov®,<sup>1,2,*</sup> Hamed Abdolmaleki®,<sup>3</sup> Daniel Britzger®,<sup>4</sup> Amanda Cooper-Sarkar®,<sup>5</sup> Francesco Giuli®,<sup>6</sup> Alexander Glazov®,<sup>2,†</sup> Aleksander Kusina®,<sup>7</sup> Agnieszka Luszczak®,<sup>8</sup> Fred Olness®,<sup>9</sup> Pavel Starovoitov®,<sup>10</sup> Mark Sutton®,<sup>11</sup> and Oleksandr Zenaiev®<sup>12</sup>
```

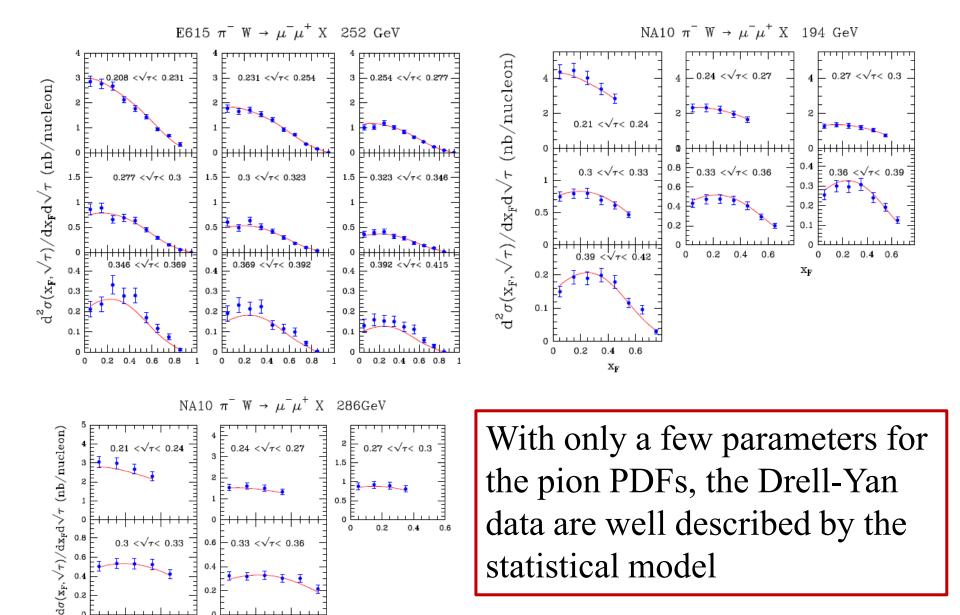
(xFitter Developers' team)

- Drell-Yan data from NA10 and E615
- Direct photon production data from WA70
- Uncertainties of the pion PDFs are determined
- Valence distribution is well determined, but not the sea and gluon distributions

A New Extraction of Pion Parton Distributions in the Statistical Model

Claude Bourrely^a, Franco Buccella^b, Jen-Chieh Peng^c

Physics Letters B 813 (2021) 136021


$$xU(x) = xD(x) = \frac{A_U X_U x^{b_U}}{\exp[(x - X_U)/\bar{x}] + 1} + \frac{\tilde{A}_U x^{\tilde{b}_U}}{\exp(x/\bar{x}) + 1}.$$
(7)

$$x\bar{U}(x) = x\bar{D}(x) = \frac{A_U(X_U)^{-1}x^{b_U}}{\exp[(x+X_U)/\bar{x}]+1} + \frac{\tilde{A}_Ux^{\tilde{b}_U}}{\exp(x/\bar{x})+1}.$$
In antiquark's flavor structure is related to quark's flavor structure.

$$xS(x) = x\bar{S}(x) = \frac{\tilde{A}_U x^{\tilde{b}_U}}{2[\exp(x/\bar{x}) + 1]}$$
 (9)

$$xG(x) = \frac{A_G x^{b_G}}{\exp(x/\bar{x}) - 1}.$$
(10)

- The statistical model describes proton's PDF very well
- The antiquark's flavor structure is
- (8) The antiquark's spin structure is related to quark's spin structure
 - It is not clear if the statistical model also works for meson's PDFs

 $\mathbf{x}_{\mathbf{F}}$

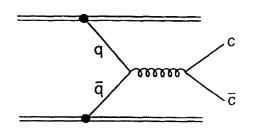
Comparison between proton and pion PDFs in the statistical model

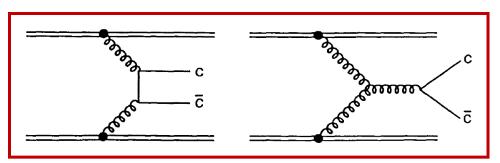
$$xQ^{\pm}(x) = \frac{A_Q X_Q^{\pm} x^{b_Q}}{\exp[(x - X_Q^{\pm})/\bar{x}] + 1},$$

$$A_U = 0.776 \pm 0.15 \qquad b_U = 0.500 \pm 0.02$$

$$X_U = 0.756 \pm 0.01 \qquad \bar{x} = 0.1063 \pm 0.004$$

$$\tilde{A}_U = 2.089 \pm 0.21 \qquad \tilde{b}_U = 0.4577 \pm 0.009$$


$$A_G = 31.17 \pm 1.7 \qquad b_G = 1 + \tilde{b}_U.$$


- The temperature, $\bar{x} = 0.106$, found for pion is very close to that obtained for proton, $\bar{x} = 0.090$, suggesting a common feature for the statistical model description of baryons and mesons
- The chemical potential of the valence quark for pion, $X_U = 0.756$, is significantly larger than for proton, $X_U = 0.39$

Constraining gluon distribution of pion with pion-induced J/Y production

- The Drell-Yan data are not sensitive to the gluon distributions in pion
- The J/Ψ production data are sensitive to the gluon PDF in pion, which is poorly known and is of much theoretical interest

J/Ψ (q-qbar annihilation) J/Ψ (gluon-gluon fusion)

Pion PDFs using DY and J/Ψ data

Phys.Rev.D 105 (2022) 076018; arXiv: 2202.12547

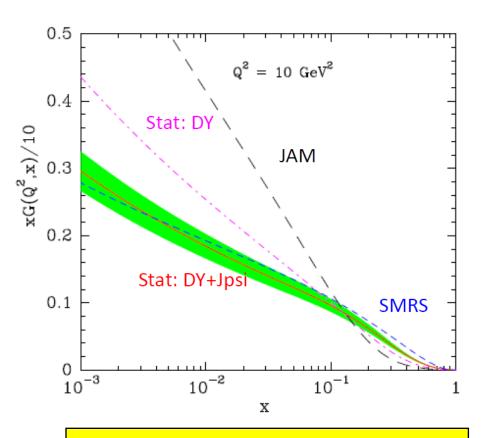
$$xU(x) = xD(x) = \frac{A_{U}X_{U}x^{b_{U}}}{\exp[(x - X_{U})/\bar{x}] + 1} + \frac{\tilde{A}_{U}x^{\tilde{b}_{U}}}{\exp(x/\bar{x}) + 1}$$

$$x\bar{U}(x) = x\bar{D}(x) = \frac{A_{U}(X_{U})^{-1}x^{b_{U}}}{\exp[(x + X_{U})/\bar{x}] + 1} + \frac{\tilde{A}_{U}x^{\tilde{b}_{U}}}{\exp(x/\bar{x}) + 1}$$

$$xS(x) = x\bar{S}(x) = \frac{\tilde{A}_{U}x^{\tilde{b}_{U}}}{2[\exp(x/\bar{x}) + 1]}$$

$$xG(x) = \frac{A_{G}x^{b_{G}}}{\exp(x/\bar{x}) - 1}, \quad b_{G} = 1 + \tilde{b}_{U}$$

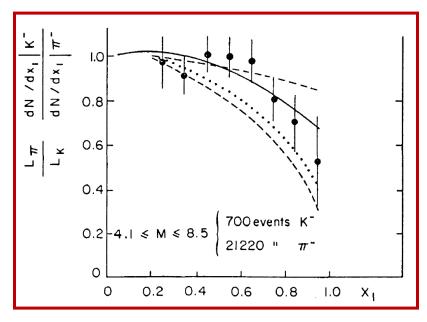
$$J / \Psi \text{ WA39 and NA3 J/} \psi \quad (\pi^{-} \text{ H}_{2})$$


$$0.06 \quad \text{WA39 39.5 GeV} \quad 0.3 \quad \text{NA3 150 GeV}$$

$$0.04 \quad 0.04 \quad 0.3 \quad \text{NA3 200 GeV}$$

$$0.1 \quad 0.1 \quad 0.1 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1$$

$$0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1$$


$$X_{F}$$

Inclusion of the J/ Ψ data gives larger G(x) at x>0.1

What do we know about the kaon PDF (very little!)

$$\sigma(K^- + Pt) / \sigma(\pi^- + Pt)$$
 Drell-Yan ratios

From NA3; 150 GeV, Pt target

$$R = \frac{\sigma_{DY}(K^{-} + D)}{\sigma_{DY}(\pi^{-} + D)}$$

$$\simeq \frac{4V_{K}^{u}(x_{1})V_{N}(x_{2}) + 4V_{K}^{u}(x_{1})S_{N}(x_{2}) + V_{K}^{s}(x_{1})s_{p}(x_{2}) + 5S_{K}(x_{1})V_{N}(x_{2})}{4V_{\pi}(x_{1})V_{N}(x_{2}) + 5S_{\pi}(x_{1})V_{N}(x_{2}) + 5V_{\pi}(x_{1})S_{N}(x_{2})} \simeq \frac{V_{K}^{u}(x_{1})}{V_{\pi}(x_{1})}$$

 $R \simeq (1-x)^{0.18\pm0.07} \Longrightarrow$ softer *u*-valence in kaon than in pion $|_{14}$

Extraction of kaon partonic distribution functions from Drell-Yan and J/ψ production data

Claude Bourrely a, Franco Buccella b, Wen-Chen Chang c, Jen-Chieh Peng d

Phys. Lett. B 848 (2024) 138395 Pion PDFs $xU_{\pi}(x) = \frac{A_{U}X_{U}x^{b_{U}}}{\exp[(x - X_{U})/\bar{x}] + 1} + \frac{\tilde{A}_{U}x^{b_{U}}}{\exp(x/\bar{x}) + 1} \; ; \qquad xU_{K}(x) = \frac{A_{UK}X_{UK}x^{b_{UK}}}{\exp[(x - X_{UK})/\bar{x}] + 1} + \frac{\tilde{A}_{UK}x^{\bar{b}_{UK}}}{\exp(x/\bar{x}) + 1} \; ;$ $x\bar{U}_{\pi}(x) = \frac{A_{U}(X_{U})^{-1}x^{b_{U}}}{\exp[(x+X_{U})/\bar{x}]+1} + \frac{\tilde{A}_{U}x^{b_{U}}}{\exp(x/\bar{x})+1} \; ; \qquad x\bar{U}_{K}(x) = \frac{A_{UK}(X_{UK})^{-1}x^{b_{UK}}}{\exp[(x+X_{UK})/\bar{x}]+1} + \frac{\tilde{A}_{UK}x^{\bar{b}_{UK}}}{\exp(x/\bar{x})+1} \; ;$ $xS_{\pi}(x) = \frac{A_U x^{b_U}}{2[\exp(x/\bar{x}) + 1]}$; $xG_{\pi}(x) = \frac{A_G x^{D_G}}{\exp(x/\bar{x}) - 1}$, $b_G = 1 + \tilde{b}_U$. P_{lab} 150 GeV K⁻/ π Drell-Yan NLO _{0.4} NA3, K^-/π^- D-Y150 GeV

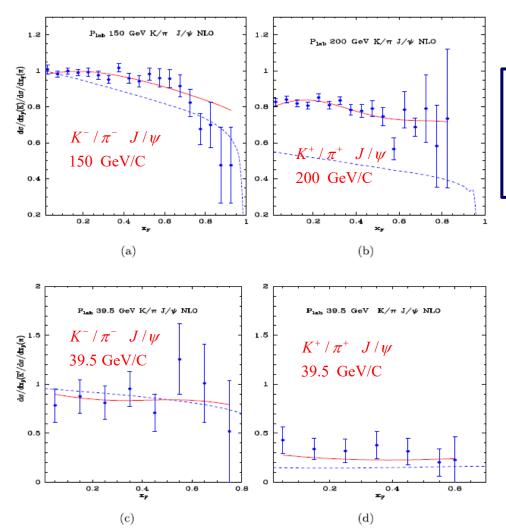
$$xU_{K}(x) = \frac{A_{UK}X_{UK}x^{b_{UK}}}{\exp[(x - X_{UK})/\bar{x}] + 1} + \frac{A_{UK}x^{b_{UK}}}{\exp[(x/\bar{x}) + 1]};$$

$$x\bar{U}_{K}(x) = \frac{A_{UK}(X_{UK})^{-1}x^{b_{UK}}}{\exp[(x + X_{UK})/\bar{x}] + 1} + \frac{\tilde{A}_{UK}x^{\tilde{b}_{UK}}}{\exp[(x/\bar{x}) + 1]};$$

$$xS_{K}(x) = \frac{A_{SK}X_{SK}x^{b_{SK}}}{\exp[(x - X_{SK})/\bar{x}] + 1} + \frac{\tilde{A}_{UK}x^{\tilde{b}_{UK}}}{2[\exp(x/\bar{x}) + 1]};$$

$$x\bar{S}_{K}(x) = \frac{A_{SK}(X_{SK})^{-1}x^{b_{SK}}}{\exp[(x + X_{SK})/\bar{x}] + 1} + \frac{\tilde{A}_{UK}x^{\tilde{b}_{UK}}}{2[\exp(x/\bar{x}) + 1]};$$

$$xD_{K}(x) = x\bar{D}_{K}(x) = \frac{\tilde{A}_{UK}x^{\tilde{b}_{UK}}}{(\exp(x/\bar{x}) + 1)};$$


$$xG_{K}(x) = \frac{A_{GK}x^{b_{GK}}}{\exp(x/\bar{x}) - 1}, \quad b_{GK} = 1 + \tilde{b}_{UK}.$$

The K^-/π^- D-Y data can be well described

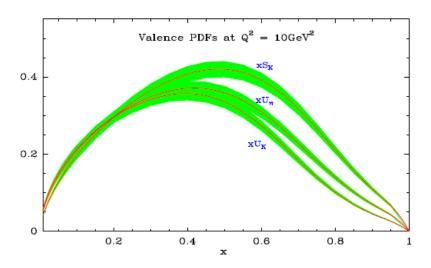
Extraction of kaon partonic distribution functions from Drell-Yan and J/ψ production data

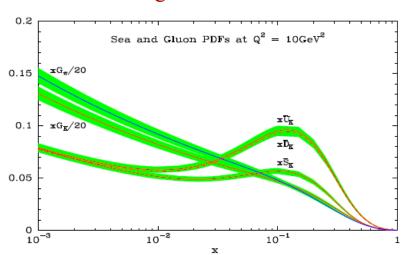
Claude Bourrely a, Franco Buccella b, Wen-Chen Chang c, Jen-Chieh Peng d

Phys. Lett. B 848 (2024) 138395

The K^-/π^- and K^+/π^+ J/ Ψ data can also be well described by the statistical model (red curves)

The dashed curves use the recent PDFs obtained in the "Maximum Entropy" approach


Extraction of kaon partonic distribution functions from Drell-Yan and J/ψ production data


Claude Bourrely ^{a, , ,} Franco Buccella ^b, Wen-Chen Chang ^c, Jen-Chieh Peng ^d

Phys. Lett. B 848 (2024) 138395

Comparison between the pion and kaon valence distributions

Comparison between the pion and kaon gluon distributions

Momentum fractions of valence quarks, sea quarks, and gluons for π^- and K^- at the scale $Q^2 = 10 \text{ GeV}^2$ obtained in the statistical model.

u Valence	d Valence	s Valence	all Sea	Gluon
0.242 ± 0.004 0.220 ± 0.002	_		0.188 ± 0.004 0.162 ± 0.006	_

$$S_K > U_\pi > U_K; G_K \simeq G_\pi$$

Summary

- Parton distributions of mesons represent
 - * an interesting topic for theories and experiments
 - * unique opportunities at AMBER, JLab, and EIC
- J/Ψ production provides useful information on the quark and gluon contents of mesons
 - * First results on the extraction of meson PDFs in the framework of statistical model have been obtained using both the Drell-Yan and the J/Ψ data, allowing a comparison between π and K PDFs
 - * J/Ψ data should be included in future global fits for better constraining the gluon distributions in pion and kaon