

Lepton Flavour Universality tests using $b \rightarrow c l \bar{v}$ decays

Chen Chen (on behalf of the LHCb collaboration)

AMU, CNRS/IN2P3, CPPM, Marseille, France

10th April, Grenoble, France

Physics opportunities in $b \rightarrow c l \bar{\nu}$ decays

Distortion of differential width shape from SM

Probe to New Physics

Advantages:

- Large data statistics
- Theoretically clean
 - Only $b \rightarrow c$ hadronic current

Challenges:

- Partially reconstructed due to missing neutrinos
- Large background from other *B* decays

LFU ratios

 $R(D) \& R(D^*)$ anomaly from SM at 3.34 σ

More measurements are strongly motivated

- To further improve R(D)&R(D*) precision
- To extend physics programs
 - $R(H_c)$
 - Angular coefficients in $b \rightarrow c l \bar{\nu}$ decays

HFLAV

LFU tests in $b \rightarrow c l \bar{\nu}$ at LHCb

Muonic τ decay

- $R(D^{*+})$ Run1 (2015)
 - [PRL 115, 111803]
- $R(D^0)\&R(D^*)$ Run1 (2023)
 - [PRL 131, 111802]
- $R(D^+) \& R(D^{*+})$ part. Run2 (2024)
 - [LHCb-PAPER-2024-007, in preparation]

New!

- *R*(*J*/ψ) Run1 (2018)
 - [PRL 120, 121801]

Hadronic τ decay

- R(D*+) Run1 (2018)
 [PRL 120, 171802]
- *R*(*D**+) part. Run2 (2023)
 - [PRD 108, 012018]
- R(Λ⁺_c) Run1 (2022)
 [PRL 128, 191803]
- $D^{*+} F_L$ Run1 & part. Run2 (2023)
 - [arXiv:2311.05224]

τ -reconstruction strategies

Muonic τ decay

- Higher statistics
- Directly measuring R(D*)
- Multiple missing neutrinos
- Larger backgrounds need to be controlled precisely

Hadronic τ decay

- Higher purity sample
 - Reconstructible τ decay vertex and specific $\tau \rightarrow 3\pi^{\pm}(\pi^0)$ dynamics
- Lower statistics
- R(D*) needs external inputs

The two strategies are complementary to each other and provide independent measurements

LHCb experiment

- Dedicated for precise and efficient heavy-hadron reconstruction
 - Single-arm and forward design

- LHCb pp data samples:
 - Run1 (2011-2012)
 - $\mathcal{L} = 3 \text{ fb}^{-1}; \sqrt{s} = 7,8 \text{ TeV}$
 - Run2 (2015-2018)
 - $\mathcal{L} = 6 \text{ fb}^{-1}; \sqrt{s} = 13 \text{ TeV}$
 - Run3 (2022-2025): $\sqrt{s} = 13.6 \text{ TeV}$

- Powerful particle identification
 - $\mu/K/\pi/p$ separation
- ✓ High momentum resolution
- \checkmark High spatial resolution
 - Precise PV & *B* decay vertex
 - $\tau \rightarrow 3\pi X$ vertex

New! **R(D⁺) & R(D^{*+})** [LHCb-PAPER-2024-007, in preparation]

LHCb-PAPER-2024-007

Visible final states: $D^+\mu^-$

Strategy

LHCb 2015+2016 data 2 fb^{-1}

- First LHCb measurement using D⁺ meson
 - $\tau \rightarrow \mu \bar{\nu}_{\mu} \nu_{\tau}$; $D^{*+} \rightarrow D^{+} \pi^{0} / \gamma$; $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$

Efficiency ratio determined from simulation $R(D^{(*)+}) = \frac{\mathcal{B}(\bar{B}^0 \to D^{(*)+}\tau^-\nu_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{(*)+}\mu^-\nu_{\mu})} = \frac{\epsilon_{\mu}^{D^{(*)+}}}{\epsilon_{\tau}^{D^{(*)+}}} \frac{N_{\tau}^{D^{(*)+}}}{N_{\mu}^{D^{(*)+}}} \frac{1}{\mathcal{B}(\tau^- \to \mu^-\nu_{\tau})}$

- Tracker-Only simulation (first analysis to use)
 - Missing detector effects emulated offline
 - ×8 faster than full simulation
 - Enable producing large amount of simulation samples to reduce the related systematic uncertainty

Sub-detector response turned off

Fit strategy for $R(D^+) \& R(D^{*+})$

- 3D binned template fit to data
 - $q^2 = (p_{\bar{B}^0} p_{D^+})^2$
 - E_l^* : μ energy in \overline{B}^0 rest frame
 - m_{miss}^2 : invariant-mass of unreconstructed particles
- Simultaneous fit to four data samples with different kinds of decays enhanced in each sample
 - Signal sample: $D^+\mu^-$
 - 3 control samples to provide constraints to backgrounds
 - $D^+\mu^-\pi^-$ and $D^+\mu^-\pi^+\pi^-$: $B \to D^{**}l^-\nu_l$ • $D^+\mu^-K^+$: $B \to D^+H_cX$, $H_c \to X'l^-\nu_l$ $l \in \{\mu, \tau\}$

PDFs in the template fit

Simulation-based templates

- *B* semileptonic decays
- Double charm background
- $\Lambda_b^0 \rightarrow n D^+ \mu^- \bar{\nu}_\mu$ background

Data-based templates

- μ mis-ID background: D^+h^-
 - Obtained from μ -suppressed data sample
- Combinatorial $D^+\mu^-$ background:
 - Wrong-sign $D^+\mu^+$ data sample

(Combinatorial D^+ background subtracted using sPlot method by fitting to $M(K^-\pi^+\pi^+)$)

Form factors

- $B \rightarrow D^{(*)+}$: BGL [PRD 94 (2016) 094008, Eur. Phys. J. C 82, 1141 (2022)]]
- *B* → *D*^{**} : BLR [PRD 95 (2017) 014022]
- Form factor parameters varied in the template fit with external constraints
 - First analysis uses HAMMER [Eur. Phys. J. C. 80 (2020) 883] to do so
 - Implemented in RooHammerModel class [JINST 17 (2022) T04006]

$R(D^+) \& R(D^{*+})$ results

Fit projections in the signal sample

 $R(D^+) = 0.249 \pm 0.043(\text{stat}) \pm 0.047(\text{syst})$ $R(D^{*+}) = 0.402 \pm 0.081(\text{stat}) \pm 0.085(\text{syst})$

 $\rho = -0.39$

Source	$\mathcal{R}(D^+)$	$\mathcal{R}(D^{*+})$
Form factors	0.023	0.035
$B \to D^{**}[D^+X]\mu/\tau\nu$ fractions	0.024	0.025
$B \to D^+ X_c X$ fractions	0.020	0.034
Misidentification	0.019	0.012
Simulation size	0.009	0.030
Combinatorial background	0.005	0.020
Data/simulation agreement	0.016	0.011
Muon identification	0.008	0.027
Multiple candidates	0.007	0.017
Total systematic uncertainty	0.047	0.086

- Main systematic uncertainties:
 - Form factor parameterisation
 - Background modelling

$\mathcal{R}(D^{*-})$ with τ^+ hadronic decays

(Phys. Rev. D108 (2023) 012018)

Strategy

15+16 data (Ph) $D^{*-} \rightarrow \overline{D}^0 (\rightarrow K^+ \pi^-) \pi^-$

(Phys. Rev. D108 (2023) 012018)

Background reduction

- $B \rightarrow D^{*-} 3\pi X$ prompt decay: ~100× signal
 - Significantly suppressed by requiring a displaced τ decay vertex
- $B \to D^{*-}D(X)$ decays: ~10× signal
 - $D \equiv D_{(s)}^{+/0}, D \rightarrow 3\pi X'$
 - Similar topology to that of signal
 - Suppressed by isolation requirement
 - Further distinguished using $\tau \rightarrow 3\pi X$ dynamic
 - BDT classifier, whose output used in template fit

(Phys. Rev. D108 (2023) 012018)

• Signal yield:

3D binned template fit

•
$$q^2 \equiv (p_B - p_{D^*})^2$$

- τ lifetime
- Anti-D⁺_s BDT
- Fractions of different $D_s^+ \rightarrow 3\pi X$ and $B \rightarrow D^{*-}D_s^+(X)$ controlled by fits to data enhanced with D_s^+ decays
- Normalisation yield:
 - Fit to m(D*-3π) in fully reconstructed sample

(Phys. Rev. Lett. 120, 171802)

Comb. B°

Comb. D^*

Uncertainties on external branching fractions

 $R(D^{*-}) = 0.247 \pm 0.015(\text{stat}) \pm 0.015(\text{syst}) \pm 0.012(\text{ext})$

 $R(D^{*-})_{2011-2016} = 0.257 \pm 0.012(\text{stat}) \pm 0.014(\text{syst}) \pm 0.012(\text{ext})$

One of the most precise results

Comb. \overline{D}

New $R(D) \& R(D^*)$ world average

Tension with SM: $3.34\sigma \rightarrow 3.17\sigma$

D^{*-} longitudinal polarisation in $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$

[arXiv:2311.05224]

arXiv:2311.05224

D^{*-} polarisation

$$F_L^{D^*}(q^2) = \frac{\boldsymbol{a}_{\theta_D}(q^2) + \boldsymbol{c}_{\theta_D}(q^2)}{\boldsymbol{3}\boldsymbol{a}_{\theta_D}(q^2) + \boldsymbol{c}_{\theta_D}(q^2)}$$

- New Physics can affect $F_L^{D^*}(q^2)$ shape:
 - Black & red: two New Physics configurations

D^{*-} polarisation measurement

- Data: Run1, 2015+2016 $B^0 \to D^{*-} \tau^+ \nu_{\tau}, \ \tau^+ \to 3\pi^{\pm}(\pi^0) \bar{\nu}_{\tau}$
- Background suppression and control similar to Run 2 hadronic $R(D^*)$ analysis

[PRD 108, 012018]

• $F_L^{D^*}$ determined using 4D binned template fit

• $\cos \theta_D, \tau$	⁺ lifetime, anti- D_s^+ BDT, q^2	(0.333)	×10 ³		LHCb Run 2 (2 fb ⁻¹)	
$q^2 < 7 \text{GeV}^2/c^4$: $q^2 > 7 \text{GeV}^2/c^4$: q^2 integrated :	$0.51 \pm 0.07(stat) \pm 0.03(syst)$ $0.35 \pm 0.08(stat) \pm 0.02(syst)$ $0.43 \pm 0.06(stat) \pm 0.03(syst)$	Candidates /		$q^2 < 7 \text{ GeV}^2/c^4$	$q^2 > 7 \text{ GeV}^2/c^4$	$B \rightarrow D^{*-}D^{0}(X)$ $B \rightarrow D^{*-}D^{+}(X)$ $B \rightarrow D^{*-}D^{+}(X)$ $B \rightarrow D^{*-}3\pi^{\pm}X$ Combinatorial

-1

1-1

0

 $\cos\theta_{\rm D}$

0

- Results compatible with the Belle result and SM
 - [arXiv:1903.03102, Phys.Rev.D 98 (2018) 9, 095018, Eur.Phys.J.C 79 (2019) 3, 268, arXiv:1907.02257, arXiv:2310.03680]

Summary and prospects

• Two new LHCb results of $R(D) \& R(D^*)$

- New world average still at 3σ level away from SM

• First LHCb measurement of D^{*-} longitudinal polarisation

- First measured in two q² bins
- Most precise result
- Compatible with the Belle result and SM prediction

More are coming

. . .

- Update R(D)&R(D*) in more channels and using more data
- LFU tests for other charm/light hadrons
- Angular observables to probe spin structure of New Physics

Thanks for your attention!

LHCb pp dataset

- Run1: 3 fb⁻¹ *pp* collision @ 7, 8 TeV
- Run2: 6 fb⁻¹ pp collision @ 13 TeV
- Run3: started in 2022

Neutrino reconstruction

Muonic decay:

•
$$p_{B_Z} = \frac{m_B}{m_Y} p_{Y_Z}$$

p_B direction aligns with the vector connecting *B* decay vertex and associated PV

- Hadronic τ decay:
 - Four-momentum conservation
 - Constraints of τ and B known masses
 - p_B direction aligns with the vector connecting B vertex and associated PV
 - p_{τ} direction aligns with the vector connecting τ and B vertices
 - Solve equations to determine missing momentum with two-fold ambiguity

$R(D) \& R(D^*)$

<u>HFLAV</u>

Experiment	R(D*)	R(D)	Rescaled Correlation (stat/syst/total)	Inputs	Remarks
BaBar	0.332 ± 0.024 ± 0.018	$0.440 \pm 0.058 \pm 0.042$	-0.45/-0.07/-0.27	<u>input</u>	Phys.Rev.Lett. 109,101802 (2012) <u>arXiv:1205.5442 [hep-ex]</u> Phys.Rev.D 88,072012 (2013) <u>arXiv:1303.0571 [hep-ex]</u>
BELLE ^a	0.293 ± 0.038 ± 0.015	$0.375 \pm 0.064 \pm 0.026$	-0.56/-0.11/-0.49	<u>input</u>	Phys.Rev.D 92, 072014 (2015) <u>arXiv:1507.03233 [hep-ex]</u>
BELLE ^b	$\begin{array}{c} 0.270 \pm 0.035 \ ^{+} \\ 0.028 \\ _{-0.025} \end{array}$	-	-	<u>input</u>	Phys.Rev.Lett.118,211801 (2017) <u>arXiv:1612.00529 [hep-ex]</u> Phys.Rev.D 97,012004 (2018) <u>arXiv:1709.00129 [hep-ex]</u>
BELLE ^c	0.283 ± 0.018 ± 0.014	$0.307 \pm 0.037 \pm 0.016$	-0.53/-0.51/-0.51	<u>input</u>	Phys.Rev.Lett. 124 (2020) 16, 161803 <u>arXiv:1910.05864 [hep-ex]</u>
LHCb ^a	0.281 ± 0.018 ± 0.024	$0.441 \pm 0.060 \pm 0.066$	-0.49/-0.39/-0.43	<u>input</u>	Phys. Rev. Lett. 131, 111802 [arXiv:2302.02886]
LHCb ^b	0.257 ± 0.012 ± 0.018	-	-	<u>input</u>	Phys. Rev. D 108, 012018 [arXiv:2305.01463]
Belle II	$ \overset{0.267}{(^{+0.041}}_{_{-0.039}}) \\ \overset{(^{+0.028}}{_{-0.033}}) $	-	-	<u>input</u>	submitted to PRD <u>arXiv:2401.02840</u>
LHCb ^c	0.402 ± 0.081 ± 0.085	$0.249 \pm 0.043 \pm 0.047$	-0.48/-0.31/-0.39	<u>input</u>	Presented ad Moriond 2024 [Moriond's talk]
Average logfile.txt	0.285 ± 0.012	0.344 ± 0.026	-0.39	chi2/dof = 13.02/11 (CL = 0.29)	R(D)-R(D*), 68% C.L. contours <u>rdrds.pdf</u> R(D) <u>.pdf</u> R(D*) <u>.pdf</u>

Background reduction

Selection

- Topologic, kinematic and PID requirements on $K^-\pi^+\pi^+\mu^-$ candidates
- Isolation against partially reconstructed backgrounds with missing charged and neutral final states

Subtraction of combinatorial D⁺ background

• Fit to $M(K^-\pi^+\pi^+)$ and extract signal D^+ using sPlot method

PID categories

- μ mis-ID background: D^+h^-
 - Obtained from μ -suppressed data sample
 - Contamination fractions of different particle species unfolded

g: host (fake) tracks

Simulation correction

Data/simulation corrections

- B kinematic, multiplicity, ...
- QED effects [PRL 120, 261804 (2018)]

Excellent agreement obtained!

Enhanced components in the four samples

 Simultaneous fit to four data samples with different kinds of decays enhanced in each sample

Signal sample $D^+\mu^-$	Signal & norm:	$\begin{split} \bar{B}^{0} &\to D^{+}\tau^{-}[\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}]\bar{\nu}_{\tau} \\ \bar{B}^{0} &\to D^{*+}[D^{+}\pi^{0}/\gamma]\tau^{-}[\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}]\bar{\nu}_{\tau} \end{split}$	$\begin{split} &\bar{B}^0 \to D^+ \mu^- \bar{\nu}_\mu \\ &\bar{B}^0 \to D^{*+} [D^+ \pi^0 / \gamma] \mu^- \bar{\nu}_\mu \end{split}$
1π sample $D^+\mu^-\pi^-$	1P <i>D</i> **:	$B \to D^{**} [D^+ X] \tau^- [\mu^- \nu_\tau \bar{\nu}_\mu] \bar{\nu}_\tau$	$B \to D^{**}[D^+X]\mu^-\bar{\nu}_{\mu}$
2π sample $D^+\mu^-\pi^+\pi^-$	Higher D**:	$B \to D^{**} [D^+ X] \tau^- [\mu^- \nu_\tau \bar{\nu}_\mu] \bar{\nu}_\tau$	$B \to D^{**}[D^+X]\mu^-\bar{\nu}_{\mu}$
1K sample $D^+\mu^-K^{\pm}$	Double charm:	$B \rightarrow D^+ H_c \big[\mu^- \bar{\bar{\nu}}_{\mu} X \big] X'$	

PDF

$$PDF(q^2, m_{miss}^2, E_\ell) = 1/N_{tot} \times \left\{ R_{raw}(D^+) N_{D^+\mu} \mathcal{P}_{D^+\tau} + N_{D^+\mu} \mathcal{P}_{D^+\mu} + \right.$$
(19)

$$R_{raw}(D^{*+})N_{D^{+}\mu}\mathcal{P}_{D^{*+}\tau} + N_{D^{*+}\mu}\mathcal{P}_{D^{*+}\mu} +$$
(20)

$$N_{D_1^0\mu}\mathcal{P}_{D_1^0\mu} + f_{D_0^0}N_{D_1^0}\mathcal{P}_{D_0^0\mu} + \tag{21}$$

$$f_{D_1^{0'}} N_{D_1^0} \mathcal{P}_{D_1^{0'}\mu} + f_{D_2^0} N_{D_1^0} \mathcal{P}_{D_2\mu} +$$
(22)

$$f_{D_0^+} N_{D_0^0} \mathcal{P}_{D_0\mu}^+ + f_{D_1^{+'}} N_{D_1^+} \mathcal{P}_{D_1^{+'}\mu}^+ + \tag{23}$$

$$f_{D_2^+} N_{D_1^0} \mathcal{P}_{D_2 \mu}^+ + R_{raw}(D^{**}) N_{D^{**}} \mathcal{P}_{D^{**\tau}} +$$
(24)

$$N_{DD}\mathcal{P}^d_{DD} + f_{B_u}N_{DD}\mathcal{P}^u_{DD} + f^d_{D_s^+ \to \tau}\mathcal{P}^d_{DD} + f^u_{D_s^+ \to \tau}\mathcal{P}^u_{DD} +$$
(25)

$$N_{DD}^{3body} \mathcal{P}_{DD}^{3body} + f_{B_u}^{3body} N_{DD}^{3body} \mathcal{P}_{DD}^{3body} \right\}$$
(26)

More plots in $R(D^+) \& R(D^{*+})$ analysis

Background

- Most dominant background: $B \rightarrow D^{*-} 3\pi^{\pm} X$ prompt decay
 - ~100× signal
 - Significantly suppressed by requiring \(\tau\) vertex downstream of \(B\) vertex along the beam direction
- Second largest background: $B \rightarrow D^{*-}D(X)$ double charm decays

•
$$D \equiv D_{(s)}^{+/0}, \ D \to 3\pi^{\pm}X'$$

- Similar topology to that of signal
- $B \rightarrow D^{*-}D^+_S(X) \sim 10 \times \text{signal}$
- Suppressed by rejecting candidates with extra charged tracks from B/τ vertex
- Further distinguished using different resonant structures in $3\pi^{\pm}$ system from signal
 - BDT classifier, whose output used in template fit

Control D_s^+ decays in $B \to D^{*-}D_s^+(X)$

- $D_s^+ \rightarrow 3\pi^{\pm}X$ has abundant intermediate resonant structures
 - Branching fractions of resonances not well known and/or correctly simulated
- $D_s^+ \rightarrow 3\pi^{\pm}X$ fractions corrected using data
 - D_s^+ -like Data selected using D_s^+ BDT output
 - Simultaneous fit to $3\pi^{\pm}$ kinematics

Control fractions of $B \rightarrow D^{*-}D_s^+(X)$ decays

- D^{*-} or D_s^+ from higher excitations
 - Rare knowledge about fractions of these $B \rightarrow D^{*-}D_s^+(X)$ processes
- Branching fractions are constrained by data
 - Data: requiring fully reconstructed $D_s^+ \to 3\pi^\pm$
 - Fit to $m(D^{*-}3\pi^{\pm})$

$B^0 \rightarrow D^{*-} 3\pi^{\pm}$ yield

• $B^0 \rightarrow D^{*-}3\pi^{\pm}$ yield from a fit to $m(D^{*-}3\pi^{\pm})$

• Small contribution from $B^0 \rightarrow D^{*-}D_s^+$ subtracted from fit to $m(3\pi^{\pm})$

 $N_{B^0 \to D^{*-} 3 \pi^{\pm}} = 30540 \pm 182$

(Phys. Rev. D108 (2023) 012018)

$R(D^{*-})$ systematic uncertainties

Source	Systematic uncertainty on $\mathcal{K}(D^{*})$ (%)
PDF shapes uncertainty (size of simulation sample)	2.0
Fixing $B \to D^* - D_s^+(X)$ bkg model parameters	1.1
Fixing $B \to D^* - D^{0}(X)$ bkg model parameters	1.5
Fractions of signal $ au^+$ decays	0.3
Fixing the $\overline{D}^{**} \tau^+ \nu_{\tau}$ and $D_s^{**+} \tau^+ \nu_{\tau}$ fractions	+1.8 -1.9
Knowledge of the $D_s^+ \rightarrow 3\pi X$ decay model	1.0
Specifically the $D_s^+ \rightarrow a_1 X$ fraction	1.5
Empty bins in templates	1.3
Signal decay template shape	1.8
Signal decay efficiency	0.9
Possible contributions from other $ au^+$ decays	1.0
$B \rightarrow D^* - D^+(X)$ template shapes	+2.2 -0.8
$B \rightarrow D^* - D^0(X)$ template shapes	1.2
$B \rightarrow D^* - D_s^+(X)$ template shapes	0.3
$B \rightarrow D^* - 3\pi X$ template shapes	1.2
Combinatorial background normalisation	+0.5 -0.6
Preselection efficiency	2.0
Kinematic reweighting	0.7
Vertex error correction	0.9
PID efficiency	0.5
Signal efficiency (size of simulation sample)	1.1
Normalisation mode efficiency (modelling of $m(3\pi)$)	1.0
Normalisation efficiency (size of simulation sample)	1.1
Normalisation mode PDF choice	1.0
Total systematic uncertainty	+6.2 -5.9
Total statistical uncertainty	5.9

- Dominant sources of systematics are
 - Signal and background modelling
 - Selection criteria on
 - $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$ and $B^0 \rightarrow D^{*-} 3\pi^{\pm}$ decay modes
 - Limited size of the simulation samples
 - Empty bins in the templates

arXiv:2311.05224

More plots in $F_L^{D^*}$ analysis

35

arXiv:2311.05224

$F_L^{D^*}$ systematic uncertainties

Source	low q^2	high <i>q</i> ²	integrated
Fit validation	0.003	0.002	0.003
FF model	0.007	0.003	0.005
FF parameters	0.013	0.006	0.011
TemplateSize	0.027	0.017	0.019
$ au^+ ightarrow 3\pi^\pm\pi^0$ fraction	0.001	0.001	0.001
D** feed-down	0.001	0.004	0.003
Signal selection	0.005	0.004	0.005
Bin migration	0.008	0.006	0.007
$F_L^{D^*}$ in simulation	0.007	0.003	0.007
D _s decay model	0.008	0.009	0.009
$\cos heta_D \ D^{*-} D_s$	0.002	0.001	0.002
$\cos heta_D \ D^{*-} D_s^{*+}$	0.007	0.002	0.004
$\cos \theta_D \ D^{*-} D_s X$	0.007	0.006	0.007
$\cos heta_D \; D^{*-} D^+ X$	0.002	0.002	0.003
$\cos heta_D \ D^{*-} D^0 X$	0.002	0.002	0.003
$F_{L}^{D^{*}}$ integrated	-	-	0.002
Total	0.036	0.023	0.029

Dominant source of systematic are:

- Limited size of the simulation samples
- Form factor parameterization
- Modelling of the D_s
- $\cos \theta_D$ shape in $D^{*-}D_sX$ backgrounds
- Bin migration
- Signal acceptance
- Form factor model