Searches for LF/LN violation and hidden sectors in Kaon decays at the NA62 experiment

Marco Ceoletta on behalf of the NA62 collaboration DIS2024, Grenoble.

Bundesministerium für Bildung und Forschung

Outline

- The NA62 experiment at CERN;
 - Ultra rare $K^+ \longrightarrow \pi^+ \nu \bar{\nu}$ decay.
- Lepton Flavour and Lepton Number violation searches at NA62;
 - Experimental search of $K^+ \to \mu^- \nu e^+ e^+$.
- Hidden sector particles searches at NA62;
 - Experimental search of $K^+ \to \pi^+ X(\to e^+ e^-) X(\to e^+ e^-)$.

Other talks on NA62:

- Latest results from precision measurements at the NA62 experiment 10/04/24, 14:20.
- Latest results for searches of exotic decays with NA62 in beam-dump mode 10/04/24, 14:40.

The NA62 experiment at CERN

- Successor of NA48: •
- Data taking started in 2016;
- Continuation until beginning of LS3 (2025). ٠

Data collected in 2 run periods:

- Run 1 (2016-2018), total $\mathcal{N}_{K^+} \sim 6 \times 10^{12}$;
- Run 2 (2021-ongoing).

Main configuration **Kaon beam mode**, also:

- **Beam dump** mode (see other NA62 talks); •
- Muon beam mode, for detector set-up. ٠

NA31

1986-1998

1987-2001

2002-2002

The NA62 experiment at CERN

K⁺ rich beam from target, NA62 is a fixed target experiment: [E] 2 -= 75 GeV/c: CHOD **STRAW Designed** for $\pi \nu \overline{\nu}$ decay channel: 70% π LAV **MUV1.2** 24% p⁺ **ANTIO** Iron 6% K+ $K^+ \longrightarrow \pi^+ \nu \bar{\nu}.$ **RICH** MUV3 Target KTAG SAC CHANTI Vacuum 0 K^+ decay in-flight; RICH -1 CŌI High kaon rate. Dump RC 75 m long **decay volume**; • LKr -2 **Reconstruction** of initial state K^+ • Fiducial volume Upstream region Downstream region and **final** state particles; 0 100 150 200 250 High timing resolution O(100 ps); Z [m] • Tagging of K; Vetoing: PID: **Excellent PID** system (K, π, μ, γ, e) ; • Tracking; Free decay region. Downstream tracking; Vetoing. Calorimetry. Hermetic γ and μ veto; •

The NA62 experiment at CERN

NA62 experimental hall from downstream. Green detector is the RICH. Arrow indicates the beam direction.

The upstream tagging Cherenkov detector (CEDAR)

 $\sigma_t\approx 70~{\rm ps.}$

Upstream tracker module (GTK)

 $\sigma_t \approx 100~\mathrm{ps}, \sigma_\theta \approx 16 \mu~\mathrm{rad}, \Delta p/p \approx 0.2\%$

Downstream trackerspectrometer (STRAW)

 $\sigma_x\approx 130\mu$ m, $\Delta p/p\approx 0.3\%+0.005\%p$

10/04/2024

JINST 12 (2017) P05025

The $\pi\nu\nu$ decay at NA62

The $\pi \nu \nu$ decay is a FCNC process:

Forbidden in SM at tree level (penguin/box). •

2018 Data

 π^+ momentum [GeV/c]

SM $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

Result from Run1 data:

 $\mathcal{N}_{\pi u \bar{u}}^{\text{obs}} = 20$ (17 in 2018).

- **BR** measurement \rightarrow **CKM** matrix structure;
- Very clean SM prediction.

Box (top) and penguin diagram processes.

Orange box highlights sensitivity to CKM structure.

10/04/2024

15

m²_{miss} [GeV²/c⁴]

0.12

0.1

0.08 0.06 0.04

0.02

-0.02

-0.04

Milita Despision in State

25

[JHEP 06 (2021) 093]

LF and LN violation searches at NA62

Lepton Flavor and Lepton Number are conserved quantities within the SM \rightarrow Beyond SM physics via violation. In K^+ decays, it is possible to probe several BSM theories up to <u>O(100 TeV)</u> energy scale.

NA62 is a leading experiment in Kaon physics:

- Full **kinematic characterization** of the products;
- Easy choice on normalization channels; (very rich SM phenomenology with similar final states)
- Data driven models for evaluating MC-data discrepancies;
- Hermetic photon veto;
- Dedicated multi-track lepton trigger lines:
 - Multi-track (100 downscale);
 - Electron multi-track (8 downscale);
 - Muon multi-track (8 downscale).

Search for the $K^+ \to \mu^- \nu e^+ e^+$ decay

The decay channel $K^+ \rightarrow \mu^- \nu e^+ e^+$ is forbidden in SM by LN+LF (for $\nu_{\rm e}$) or LF (for ν_{μ}).

Observation of LN/LF decays such as this one may:

- Provide evidence of the neutrino being a Majorana particle (LN violation). [JHEP 02 (2018) 169] [Phy. Letters B 491 (2023) 285-290]
- Provide evidence for BSM models involving **Flavour violating ALPs**. [JHEP 01 (2020) 158] [Rep. Prog. Phys. 86 (2023) 016201]

Current best upper limit is:

[PLB 62 (1976) 485]

 $BR(K^+ \to \mu^- \nu e^+ e^+) < 2.1 \times 10^{-8}$

 ${
m L}=0,\,{
m L}_{
m e}=$ -1, ${
m L}_{\mu}=1.$

10/04/2024

Physics Letters B 838 (2023) 137679

@90% CL.

Search for the $K^+ \to \mu^- \nu e^+ e^+$ decay

Trigger lines: multi-track (e/μ)

SM decay $K^+ \to \pi^+ e^+ e^-$ as normalization, undetectable final state ν .

Whole NA62 Run 1 dataset used

 $\mathcal{N}_{\rm decays} \approx 2 \times 10^{12}$

Signature of final state:

- Exactly **3 well separated downstream track** events (STRAW);
- Correct **PID of the track candidates**.
- Tracks forming a vertex with $\mathbf{Q} = +1$ in the fiducial volume.
- Photon veto downstream of the vertex
 - Mitigation of Dalitz decays: $K^+ \to \pi^+ \pi^0_D, \ K^+ \to \pi^0_D e^+ \nu; \quad (\pi^0_D \to \gamma e^+ e^-)$

Downstream mass in normalisation channel.

Signal region blinded during selection.

10/04/2024

Search for the $K^+ \to \mu^- \nu e^+ e^+$ decay

Kµvee selection (signal)

- Track identified as μ, e^+, e^-
- Momentum deficit of the vertex (K 3π suppression).
- Electromagnetic veto from calorimeter.

0 events observed in signal region:

SES $(K^+ \to \mu^- \nu e^+ e^+) = (3.53 \pm 0.12) \times 10^{-11}$. BR $(K^+ \to \mu^- \nu e^+ e^+) < 8.1 \times 10^{-11}$ (@ 90% CL).

- Improvement of approx. 250 w.r.t [PLB 62 (1976) 485].
- Achieved sensitivity not sufficient for exclusion of LF/LN modes.

10/04/2024

Summary of LN/LF violation analyses in NA62 Run 1

Type	Process	Prev. UL	NA62 UL	Improvement	Reference
LNV/LFV LNV/LFV	$ \begin{array}{c} K^+ \rightarrow \mu^- \nu e^+ e^+ \\ K^+ \rightarrow e^- \nu \mu^+ \mu^+ \end{array} $	$<2.1\times10^{-8}$	$< 8.1 \times 10^{-11}$ $\sim 2 \times 10^{-11}$	${\cal O}(10^2)$	Phys. Lett. B 838 (2023) 137679
LNV LNV LNV	$K^+ \to \pi^- \mu^+ \mu^+$ $K^+ \to \pi^- e^+ e^+$ $K^+ \to \pi^- \pi^0 e^+ e^+$	$ \begin{array}{l} < 8.6 \times 10^{-11} \\ < 6.4 \times 10^{-10} \end{array} $	$< 4.2 \times 10^{-11}$ $< 5.3 \times 10^{-11}$ $< 8.5 \times 10^{-10}$	$\begin{array}{c} 2 \ (\text{w}/30\% \ \text{Run1}) \\ \mathcal{O}(10) \\ \end{array}$	Phys. Lett. B 797 (2019) 134794 Phys. Lett. B 830 (2022) 137172 Phys. Lett. B 830 (2022) 137172
LNV LNV LNV	$K^+ \rightarrow \pi^- \pi^0 \mu^+ e^+$ $K^+ \rightarrow \pi^- \mu^+ e^+$	- < 5.0 × 10 ⁻¹⁰	$< 0.3 \times 10^{-11}$ $< 4.2 \times 10^{-11}$	$\mathcal{O}(10)$	Phys. Rev. Lett. 127,131802(2021)
LFV LFV LFV LFV LFV	$\begin{aligned} K^+ &\to \pi^+ \mu^- e^+ \\ \pi^0 &\to \mu^- e^+ \\ K^+ &\to \pi^+ \pi^0 \mu^- e^+ \\ K^+ &\to \pi^+ \mu^+ e^- \\ \pi^0 &\to e^- \mu^+ \end{aligned}$	$ \begin{array}{c} < 5.2 \times 10^{-10} \\ < 3.4 \times 10^{-9} \\ - \\ < 1.3 \times 10^{-11} \\ < 3.8 \times 10^{-10} \end{array} $	$< 6.6 \times 10^{-11}$ $< 3.2 \times 10^{-10}$	${\cal O}(10) \ {\cal O}(10) \$	Phys. Rev. Lett. 127,131802(2021) Phys. Rev. Lett. 127,131802(2021)

Hidden sector searches in $K^+ \to \pi^+ e^- e^+ e^- e^+$.

Searches for Dark Sector particles from K focused on single particle production... (NA62 is involved in $K^+ \rightarrow \pi^+ X$)

Proposed channel with **pair production** of dark mediators: $K^+ \to \pi^+ X(\to e^+e^-) X(\to e^+e^-);$

There are SM channels with the same signature \rightarrow Normalization.

• Double Dalitz decay in a K2 π event: $K^+ \rightarrow \pi^+ \pi^0_{\text{DD}}(\rightarrow e^+e^-e^+e^-)$; BR = $(6.9 \pm 0.3) \times 10^{-6}$. [Prog. Theor. Exp. Phys. 2022 (2022) 083C01] • Single and double γ exchange: $K^+ \rightarrow \pi^+ \gamma^*$, $K^+ \rightarrow \pi^+ \gamma^* \gamma^*$; BR = $(7.2 \pm 0.7) \times 10^{-11}$. [Phys. Rev. D106 (2022) L071301]

10/04/2024

First experimental result for $K^+ \to \pi^+ e^- e^+ e^- e^+$.

Trigger lines: multi-track (e/μ).

Signal region blinded during selection.

Whole NA62 Run 1 dataset used

 $\mathcal{N}_{\rm decays} \approx 8.6 \times 10^{11}$

Signature of final state:

- **5** downstream tracks;
 - **STRAW** is used exclusively, no acceptance check;
 - Tracks forming a vertex with Q = +1, consistent with the beam momentum and direction;

• $K\pi^0DD$ decay channel as normalisation.

 m_{4e} for data and MC after the K π^0 DD selection. Normalisation region highlighted.

10/04/2024

First experimental result for $K^+ \to \pi^+ e^- e^+ e^- e^+$.

Result:

- 0 events observed in signal region;
 - Expected background from MC in signal region:

 $\mathcal{N}_{\rm BG} = (0.18 \pm 0.14).$

• Branching ratio for non resonant case:

BR
$$(K^+ \to \pi^+ 4e) < 1.4 \times 10^{-8}$$
 (@ 90% CL).

(200 times greater than SM prediction)

5 tracks and 7 tracks backgrounds. (only shown $BR > 10^{-8}$)

3 tracks backgrounds with K3 π coincidence. (only shown BR > 10⁶)

 $m_{\pi 4e}$ after K π 4e selection, with signal region highlighted. Most relevant backgrounds for 3 track and 5+ track included.

Signal region blinded during selection.

10/04/2024

First experimental result for $K^+ \to \pi^+ e^- e^+ e^- e^+$.

Signal-like events are subset of $K\pi 4e$; discrimination is based on:

1) Parent particle (X = ALP or A') of each e^+e^- couple is pair produced, so masses of couples should be consistent!

Discriminant: compatibility of couple masses, normalised over expected couple mass resolution (from MC).

$$\mathcal{D} = \frac{(m_{ee1} - m_{ee2})^2}{(4.9 \times 10^{-3} m_{ee})^2}.$$

2) The mass hypothesis for the parent particle should not be "too far" from the one of the couple.

$$|m_{ee} - m_X| < 0.02m_X.$$

Expected SM background in signal region:

$$\mathcal{N}_{BG} = (4 \pm 4) \times 10^{-4}$$
$$\mathcal{N}_{obs} = 0.$$

Exclusion of the light QCD ALP as source of "17MeV" anomaly! $BR_{exp}(K^+ \to \pi^+ aa)BR_{exp}(a \to e^+e^-)^2 < 2.1 \times 10^{-9} @ m_a = 17 MeV/c^2.$ $BR_{theo}(K^+ \to \pi^+ aa)BR_{theo}(a \to e^+e^-)^2 > 2 \times 10^{-8} @ m_a = 17 MeV/c^2.$

10/04/2024

Outlook and future

- The NA62 experiment provided the best available estimation for the ultra-rare $\pi v \bar{v}$ decay.
 - NA62 Run 1 data published;
 - NA62 Run 2 data being analysed.
- Rich Rare and Exotics decay physics program \leftarrow powerful probe for BSM Physics;
- Improvement up to $O(10^2)$ on several LF/LN-violating decay channels involving K^+ .
- First result for $K^+ \to \pi^+ X(\to e^+ e^-) X(\to e^+ e^-)$.
- All the measurements, including the $\pi \nu \overline{\nu}$, will provide better upper limits with Run 2 data.

END Backup slides

Introduction to the $K^+ \longrightarrow \pi^+ \nu \bar{\nu}$ decay

The PNN decay is a FCNC process:

- Forbidden in SM at tree level (penguin/box).
- **BR** directly related to **CKM matrix structure**.
 - Quadratic GIM Mechanism \rightarrow experimentally measurable short range operators.
- Very clean SM prediction through Ke3 decay channel.

Testing ground for BSM flavour physics, such as:

- Direct evidence of CP violation (together with $K_{\rm L}\pi^0\nu\nu$);
- Lepton flavour (non)universality;
- Provide constraint to Leptoquark models;
- Deviations from SM.

Strong SM branching ratio predictions:

 $BR = (7.86 \pm 0.61) \times 10^{-11} \text{ JHEP 09 (2022) 148}$ $BR = (8.60 \pm 0.42) \times 10^{-11} \text{ arXiv:} 2109.11032$ $BR = (7.73 \pm 0.61) \times 10^{-11} \text{ arXiv:} 2105.02868$

Penguin (top) and Box diagram processes involved in the PNN decay.

Orange box highlights sensitivity to CKM structure.

10/04/2024

The PNN decay at NA62

10/04/2024

Backup

Main K decay channels

Decay channel		$BR\left[\% ight]$
$\overline{K^+ \longrightarrow \mu^+ \nu}$	$[K_{\mu 2}]$	63.55
$K^+ \longrightarrow \pi^+ \pi^0$	$[K_{2\pi}]$	20.66
$K^+ \longrightarrow 2\pi^+ \pi^-$	$[K_{3\pi}]$	5.59
$K^+ \longrightarrow \pi^0 e^+ \nu$	$[K_{e3}]$	5.07
$K^+ \longrightarrow \pi^0 \mu^+ \nu$	$[K_{\mu 3}]$	3.353
$K^+ \longrightarrow \pi^+ 2\pi^0$	$[K_{3\pi 0}]$	1.761
$\mathbf{K}^+ \longrightarrow \pi^+ \nu \bar{\nu}$	[PNN]	$\sim 7.8 imes 10^{-9}$

Kπ4e selection

Rejection of π^0 , done with:

- Cut on m_{4e} ;
- Cut on $m_{\text{miss}}^2 = (P_{K^+} P_{\pi^+})^2$. $m_{4\text{e}}$ incompatible with $m_{\pi 0}$ Missing mass does not hint π^0

$K\pi^0DD$ selection

selection of events with m^{2}_{miss} and m_{4e} compatible with π^{0} in final state.

Decay BG of pieeee

Source	Branching ratio (or their product)
5 track, 7 track decays:	
$K_{2\pi\mathrm{DD}}$	$6.9 imes10^{-6}$
$K^+ \rightarrow \pi^+ \pi^0_{ m D} \pi^0_{ m D}$	$2.4 imes10^{-6}$
$K^+ \rightarrow \pi^0_{\rm DD} e^+ \nu$	$1.7 imes 10^{-6}$
$K^+ \rightarrow \pi^+ \pi^0 \pi^0_{\rm DD}$	$1.2 imes 10^{-6}$
$K^+ \rightarrow \pi^0_{\rm DD} \mu^+ \nu^0$	$1.1 imes 10^{-6}$
$K^+ \rightarrow \pi^+ \pi^0_{\rm D} \pi^0_{\rm DD}$	$1.4 imes 10^{-8}$
3 track decays with $K3\pi$	coincidence:

$K^+ \rightarrow \pi_{\rm D}^0 e^+ v$	$3.3 imes10^{-5}$
$K^+ \rightarrow \pi^+ \pi^0 \pi_{\rm D}^0$	$2.3 imes10^{-5}$
$K^+ \rightarrow \pi_D^0 \mu^+ \nu^2$	$2.2 imes 10^{-5}$

10/04/2024

Backup

Table 1

Backgrounds to the $K_{\pi 4e}$ decay, their branching ratios (or products of branching ratios for coincidences of two decays), and estimated backgrounds with their statistical uncertainties in the control $(\Delta p < -2 \text{ GeV}/c)$ and signal $(|\Delta p| < 2 \text{ GeV}/c)$ momentum excess regions shown in Fig. 3 (left). Estimated backgrounds in the control region for a loose $K_{\pi 4e}$ selection, with the $p_{\pi} > 10 \text{ GeV}/c$ condition removed, are also shown. The $K^+ \rightarrow \pi^+ \pi_D^- e^+ e^-$ decay, as well as the $K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ decay in coincidence with a $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ decay, and coincidences of any of the two decays, $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ and $K^+ \rightarrow \pi^+ \pi_D^0$, lead to negligible backgrounds in the control and signal regions, and are not listed.

Source	Branching ratio (or their product)	Control region	Control region, loose selection	Signal region
Single five-track and seven-track decays				
$K_{2\pi DD}$	$6.9 imes10^{-6}$	0.06 ± 0.06	0.06 ± 0.06	-
$K^+ \rightarrow \pi^+ \pi^0_{\rm D} \pi^0_{\rm D}$	$2.4 imes10^{-6}$	0.30 ± 0.06	2.47 ± 0.16	0.04 ± 0.02
$K^+ \rightarrow \pi^0_{\rm DD} e^+ \nu$	$1.7 imes10^{-6}$	0.10 ± 0.05	0.10 ± 0.05	-
$K^+ \rightarrow \pi^+ \pi^0 \pi_{\rm DD}^0$	$1.2 imes 10^{-6}$	0.03 ± 0.03	0.03 ± 0.03	-
$K^+ \rightarrow \pi^0_{\rm DD} \mu^+ \nu^-$	$1.1 imes 10^{-6}$	0.02 ± 0.02	0.03 ± 0.02	-
$K^+ \rightarrow \pi^+ \pi^0_{\rm D} \pi^0_{\rm DD}$	$1.4 imes 10^{-8}$	0.05 ± 0.02	0.10 ± 0.02	0.01 ± 0.01
Coincidences of three-track decays with a $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ decay				
$K^+ \rightarrow \pi_{\rm D}^0 e^+ \nu$	$3.3 imes 10^{-5}$	0.15 ± 0.07	0.15 ± 0.07	0.08 ± 0.05
$K^+ \rightarrow \pi^+ \pi^0 \pi_{\rm D}^0$	$2.3 imes 10^{-5}$	0.03 ± 0.03	0.08 ± 0.05	-
$K^+ \rightarrow \pi^0_{\rm D} \mu^+ \nu^2$	2.2×10^{-5}	0.03 ± 0.02	0.04 ± 0.02	0.05 ± 0.02
Total		0.77 ± 0.13	3.06 ± 0.21	0.18 ± 0.06
Data		1	4	0

Table 1

Background estimates in the lower, signal and upper $K_{\mu\nu ee}$ squared missing mass regions with their statistical uncertainties. The contributions from upstream $K^+ \rightarrow \pi^+\pi^+\pi^-$ and $K^+ \rightarrow \pi^+\pi^-e^+\nu$ decays are quoted separately. Upper limits at 90% CL are quoted when no simulated events satisfy the selection. The numbers of observed data events are also listed.

Mode / Region	Lower	Signal	Upper
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	< 0.07	< 0.07	1412 ± 11
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$	0.01 ± 0.01	0.16 ± 0.02	867 ± 1
$K^+ ightarrow \pi^+ \pi^+ \pi^-$ (upstream)	< 0.03	0.06 ± 0.03	1.5 ± 0.3
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ (upstream)	0.01 ± 0.01	0.01 ± 0.01	0.14 ± 0.03
$K^+ ightarrow \pi_D^0 e^+ v$	0.02 ± 0.01	0.01 ± 0.01	0.02 ± 0.01
$K^+ \rightarrow e^+ \nu \mu^+ \mu^-$	< 0.01	< 0.01	0.05 ± 0.02
Total expected	0.04 ± 0.02	0.26 ± 0.04	2281 ± 11
Data	0	0	2271