

Physics of the electroweak sector at CMS

Mario Pelliccioni Istituto Nazionale di Fisica Nucleare for the CMS collaboration DIS 2024 - Grenoble

Introduction

0.0

-0.8

0.1

0.2

-0.2

-1.6

-0.9

-0.9

0.1

-2.1 -0.7

0.5

0.8

2.4

0.0

0.6

0.0

-0.7

0.3

-0.2

2.1

2

з

CMS-PAS-22-010

What we measure

Asymmetry in DY lepton decay angular distribution

Use $\boldsymbol{y}_{\!\scriptscriptstyle \parallel}$ to define positive direction of incoming quark

- \rightarrow effect of dilution and PDF uncertainties
- \rightarrow strong dependence of A_{fb} with rapidity
- \rightarrow determine angle from A_{fb} or unfolded A_4

Analysis strategy

Analysis on full run-2 dataset

Four dilepton states:

- $\mu\mu: |\eta| < 2.4$
- ee: |η|<2.5
- ee f wd electron $2.5 < |\eta| < 2.87$ ee HF electron $3.14 < |\eta| < 4.36$
- - \rightarrow maximal extension of acceptance using EM

showers in forward calorimeters

Main backgrounds:

- QCD (from data sidebands)
- W+jets (from simulation)
- EWK and top (from simulation)

Two measurements:

- -
- $\sin^2\!artheta_{
 m eff}$ using A $_{
 m fb}$ Unfolded A $_4$ distribution
 - \rightarrow for possible reinterpretation

A_{fb} fit result

 χ^2 simultaneous fit of A_{fb}(y,m) in all year and channel categories

Good sensitivity from forward topologies

A₄ extraction and result

 A_{A} from fit on $\cos\vartheta$ distribution in rapidity and mass bins

Extract $\sin^2 \vartheta_{\rm eff}$ simultaneously per year and channel

Channel	n(bins)	$\chi^2_{ m min}$	p(%)	$\sin^2 heta^\ell_{ m eff}$	\pm	σ
$\mu\mu$	54	59.7	24.6	23146	±	39
ee	54	47.0	70.7	23192	\pm	43
eg	12	11.1	43.6	23251	\pm	60
eh	12	8.4	67.3	23129	\pm	47
ll	63	61.3	50.3	23155	\pm	32

Compatibility checks

Good compatibility across channels and years

Results

 $\sin^2 \theta_{\rm eff}^{\ell} = 0.23157 \pm 0.00010 (\rm stat) \pm 0.00015 (\rm syst) \pm 0.00009 (\rm theo) \pm 0.00027 (\rm pdf)$

- Good agreement with SM and previous measurement
- Dominated by PDF uncertainties
- Most precise measurement at hadron collider!

$\gamma\gamma \rightarrow \tau\tau$ and g_{τ} -2

CMS-PAS-SMP-23-005

Intro

A photon-induced process from peripheral collisions Goes as Z⁴, so Pb-Pb enhancement

- \rightarrow but at high transferred energy, p-p takes over
- \rightarrow at very high energy one can look for fwd protons

Expect two back-to-back objects with minimal activity

- \rightarrow Can use the number of tracks in the event as a discriminant
- \rightarrow Can use topological variables to isolate this process
- Contribution from non-elastic processes with partial (or total) proton dissociation

Analysis performed on the full run-2 on both leptonic (only different flavor) and hadronic τ decays

Tracks counting

Define primary vertex as average z position of Ts

Define N_{trk}

- -
- $p_T > 0.5$ GeV and $|\eta| < 2.5$ in a 0.1 cm windows around vertex

Two main corrections:

- PU: compare N_{trk} in DY data/MC in windows far from vertex Hard scattering: compare N_{trk} in DY data/MC around the vertex

[Semi-]dissociative contribution

Contribution from dissociation of protons not negligible

Rejected by topological cuts, but much higher cross section

Use $\mu\mu$ control region with signal selection

- \rightarrow Normalize Z peak to high $\rm N_{trk}$ region
- Rescale elastic contribution outside the Z peak

Results

Main systematic uncertainties:

- Elastic rescaling
- UE/HS correction
- Hadronic tau ID

Observation of $\gamma\gamma \rightarrow \tau\tau$

First observation in p-p collisions!

	Observed	Expected	
еμ	2.3 σ	3.2 σ	
eτ _h	3.0 σ	2.1 σ	
μτ _h	2.1 σ	3.9 σ	
$\tau_h \tau_h$	3.4 σ	3.9 σ	
Combined	5.3 σ	6.5 σ	

Signal strength for elastic prediction rescaled with our data-driven method

Constraints on a_{τ}

Use invariant mass distribution to extract limit on anomalous dipole moment with a new EFT approach

Conclusions

EWK precision measurements a staple of the LHC physics program!

Many key measurements are reaching (or beyond) the LEP precision era

- refine our techniques and understanding of our detectors to higher level

Feedback from theory fundamental to be able to push this precision even further

We are just at the beginning:

- completing the run-2 program
- many run-3 analyses in the pipeline

