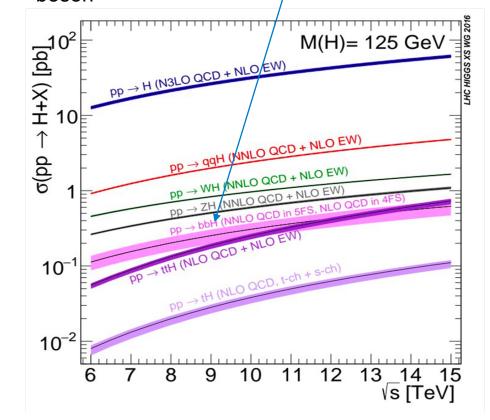


Search for b-associated production of Higgs boson in final state with leptons at CMS

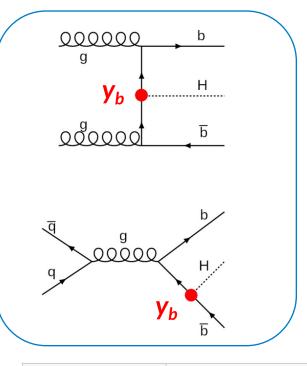


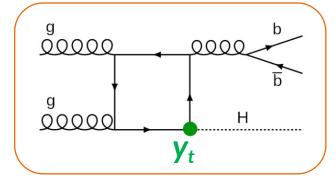
Higgs boson

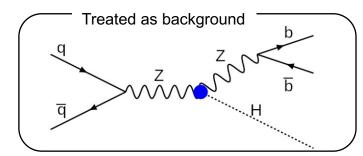
Production modes

- So far, most of the SM Higgs boson production modes have been studied at the LHC
- The search of b-associated Higgs boson production (bbH) is attempted for the first time for the SM Higgs boson

bbH production mode:


- Direct probe of Higgs couplings to the bottom quark
 (y_b) in production
- Complementary to the other measurements such as,
 H→bb decay mode
- Possibility to constrain top and bottom Yukawa coupling
- Investigate experimental sensitivity to open the testing of recent theoretical computation of the bbH production cross-section


Challenges:

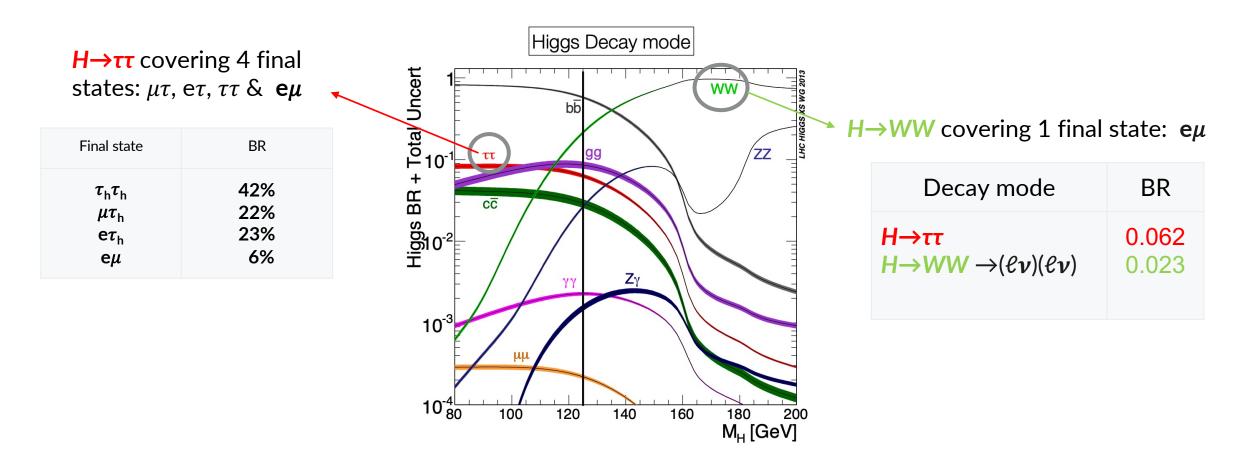

- Large background contribution for example more than ttH
- Interference between different production modes

bbH production modes

Feynman diagrams

CMS-PAS-HIG-23-003

Analysis goal


- Constrain inclusive cross-section of b-quark associated production $\sigma(y_b, y_t)$
- 2. Estimated value of $\sigma(y_b, y_t)$ (NLO) = 1.49 pb
- 3. Constrain Higgs Yukawa couplings to 3rd generation quarks: 2D likelihood scan of (κ_t, κ_b)

term	σ (pb)		
y _t ²	1.040 (+0.468,-0.489)		
y _b ²	0.482 (+0.048,-0.070)		
y _b y _t	-0.033 (+0.007, -0.008)		

JHEP 1907 (2019) 054 CYRM-2017-002

Targeted decay channels

Higgs decay to tau and Higgs decay to W bosons

Analysis is performed with the full Run 2 data set of 138 fb⁻¹ at 13 TeV

Event selections & Background

All channels and their respective modelling methodes

- General event selection:
 - Lepton pair, opposite sign: $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$
 - At least one b-tagged jet
 - angular separation : $\Delta R(I/\tau_h, I/\tau_h) > 0.5$ (0.3 for eµ)

• Channel-dependent selection to suppress reducible backgrounds: e.g. transverse mass (m_T) cut to suppress reducible background in $e\tau_h$, $\mu\tau_h$ channel

$$m_T(p_{T,\ell}, p_{\mathrm{T}}^{\mathrm{miss}}) = \sqrt{2p_{T,\ell}p_{\mathrm{T}}^{\mathrm{miss}}(1 - cos(\Delta\phi(\vec{p}_{T,\ell}, \vec{p}_{T}^{\mathrm{miss}})))}$$
,

Background processes contributing to the Analysis:

Estimation method: MC simulation

- $t\bar{t}$ contributes to all final states (e μ , e τ_h , $\mu\tau_h$, $\tau_h\tau_h$)
- Drell-Yan + Jets
- Other SM Higgs production e.g. ttH

Data-driven

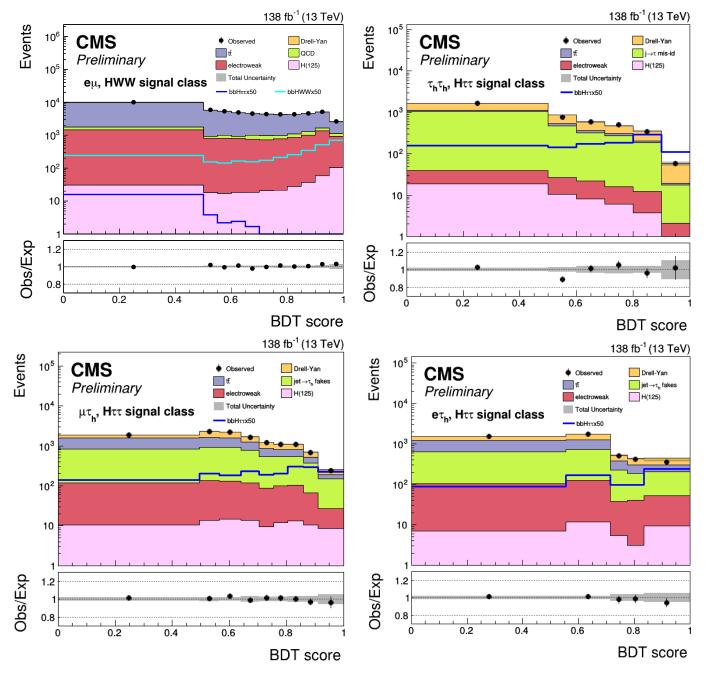
- Jets faking τ_h (e τ_h , $\mu \tau_h$, $\tau_h \tau_h$)
- QCD multi jet events in eµ

Event Classification

All Channels

- Multiclass BDT (XGBoost, LightGBM) is trained in all channels to classify events into background and signal categories
- Individual training is performed per channel and year
- Only well-modelled variables
- Respective MC samples are used in the training

Channel	еµ	$e au_h$	μau_h	$ au_h au_h$
BDT classes	Drell-Yan , $t\bar{t}$, bbH → WW, bbH → $\tau\tau$	Drell-Yan , $t\bar{t}$, bbH $\rightarrow \tau\tau$	Drell-Yan , $t\bar{t}$, bbH $\rightarrow \tau\tau$	Drell-Yan & Higgs, $t\bar{t}$, Jet $\rightarrow \tau_h$ fakes, bbH $\rightarrow \tau \tau$,


- Kinematics of the events are used as input variables
- Mix of high and low level variables

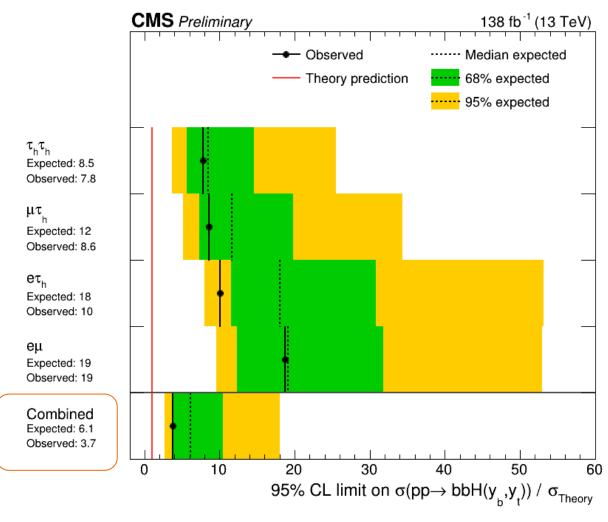
Variable	еμ	$e\tau_h$	$\mu \tau_h$	$\tau_h \tau_h$
$m_{ au au}$	×	✓	✓	✓
m_{vis}	✓	✓	✓	✓
Collinear mass	×	✓	✓	×
D_{ζ}	✓	✓	✓	×
$\Delta\eta$ between lepton and $ au_{ m h}$	×	1	✓	×
Total transverse mass	✓	×	×	×
Di- $ au$ $p_{ m T}$	✓	✓	✓	✓
Electron $p_{\rm T}$	✓	×	×	×
Muon $p_{\rm T}$	✓	×	×	×
p_{T} of leading $ au_{\mathrm{h}}$	×	×	×	✓
$p_{\rm T}$ of trailing $ au_{ m h}$	×	×	×	✓
Transverse mass	×	✓	✓	×
Number of b-jets	✓	×	×	✓
$p_{\rm T}$ of leading b-jet	✓	✓	✓	✓
$p_{\rm T}$ of trailing b-jet	×	✓	✓	×
B-tag score for leading b-jet	×	✓	✓	✓
$\Delta \eta$ between di- τ $p_{\rm T}$ and leading b-jet	×	✓	✓	×
B-tag score for trailing b-jet	×	1	✓	✓
Number of jets	✓	×	×	✓
$p_{\rm T}$ of leading jet	√	×	×	✓
$p_{\rm T}$ of trailing jet	✓	×	×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Di-jet invariant mass	×	×	×	✓
Di-jet Δη	1	×	×	✓
$p_{ m T}^{ m miss}$	×	×	×	✓

Postfit distributions

Signal categories all channels

- Postfit plots for the signal classes in all channels : HWW in e μ and HTT in e τ_h , $\mu\tau_h$, and $\tau_h\tau_h$
- good sensitivity in high BDT score region

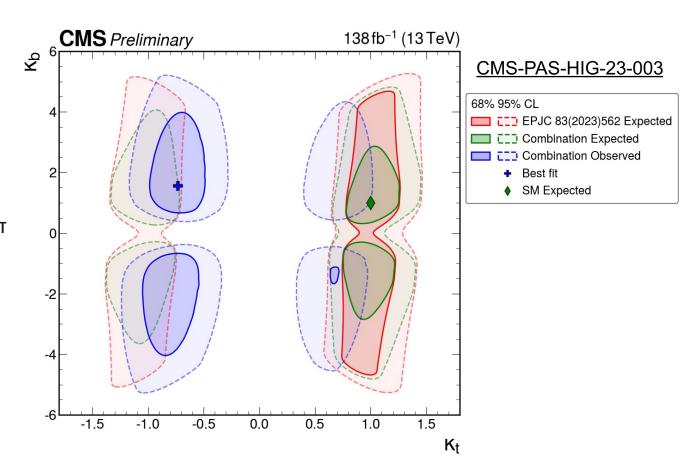
Uncertainties


- Analysis statistically limited
- Dominant uncertainties:
 - Statistical uncertainties
 - Theory uncertainties on the signal model
 - The shape correction for the b-tagging classifier introduces shape-altering effects on the BDT.
 - Uncertainties originate from correcting the top quark p_T spectra

Description	Value	Templates affected	Type
-	2016: 1.2%	-	
Luminosity uncertainty	2017: 2.3%	MC	lnN
	2018: 2.5%		
DY+jets production cross sec- tion	2%	DY	lnN
tt production cross section	6%	tī	lnN
W+jets production cross sec-	40/		LAT
tion	4%	W+jets	lnN
Di-boson production cross section	5%	vv	lnN
Single top quark production cross section	5%	ST	lnN
tt +V+jets production cross ection	15%	tt +V+jets	lnN
Higgs boson production cross section	2-5%[19]	H (except bbH)	lnN
$H \rightarrow \tau \tau$ branching fraction	2.1%[19]	$H \rightarrow \tau \tau$	lnN
$H \rightarrow WW$ branching fraction	1.5%[19]	$H \rightarrow WW$	lnN
α_S variation	3,2%	bbH	lnN
μ (e) identification	1(2)%.	MC	lnN
μ trigger	2%	MC	lnN
$\tau_{ m h}$ trigger	p_T dep.	MC	shape
b tagging	1-9%	tī, ST	shape
$\mu(e) \rightarrow \tau_h FR$	$\eta_{\tau_{\rm h}}$ dep.	MC with $\ell \rightarrow \tau_h$	shape
$\tau_{\rm h}$ identification	p _T and DM dep. (2-3%)	MC	shape
τ _h ES	1%	MC	shape
μES	0.4-2.7%	MC	shape
$\mu \to \tau_h ES$	1%	MC with $\mu \rightarrow \tau_h$	shape
$e \rightarrow \tau_{\rm h} {\rm ES}$	η_{τ_h} and DM dep.	MC with $e \rightarrow \tau_h$	shape
Jet ES	event-dep.	MC	shape
Jet energy resolution	event-dep.	MC	shape
$p_{\mathrm{T}}^{\mathrm{miss}}$ recoil corr.	event-dep.	MC	shape
p _T ^{miss} unclustered ES	event-dep.	MC	shape
top quark p_T reweighing	10%	tt̄, ST	shape
$Z p_T$ reweighing	10%	DY	shape
QCD multijet uncertainty	event-dep.	$j \to \ell$ fakes (e μ channel)	lnN
FF uncertainties	event-dep.	$j \rightarrow \tau_{\rm h}$ fakes	shape
Pre-firing	event-dep.	MC	lnN
Bin-by-bin stat. uncertainty	event-dep.	All	shape

Results

Expected & Observed limits

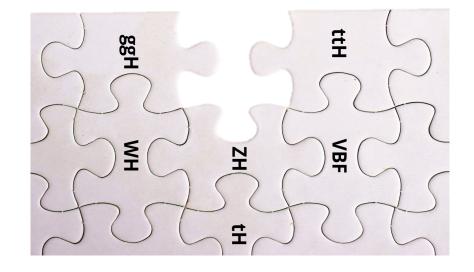

- Limits on b-associated Higgs production signal strength obtained by a simultaneous fit on all BDT categories
 - 3 output categories in eτ_h, μτ_h
 - 4 output categories in eμ, τ_hτ_h
- Inclusive measurement: the different contributions to the signal are scaled by varying proportionally the y_b^2 , y_t^2 and $y_b y_t$
- Observed and expected 3.7 (6.1) 95% CL upper limits on signal strength in individual channels
 and for their combination

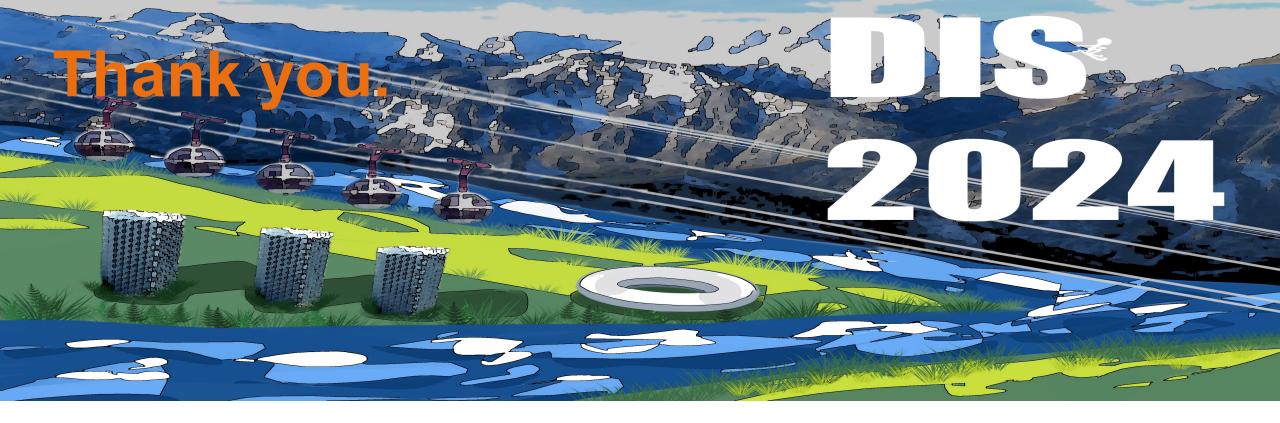
Results

2D likelihood scan (κ_t, κ_b)

- limits are derived on the Higgs boson coupling to b
 quarks (κ_b=y_b/y_{b,SM}) and top quarks (κ_t=y_t/y_{t,SM})
 - ggH term ~ $1.04\kappa_t^2 + 0.002\kappa_b^2 0.04\kappa_t\kappa_b$
 - bbH term ~ κ_b²
 - interference term ~ K_tK_b
- To constrain κ_t , analysis is combined with STXS H \rightarrow TT analysis (CMS-HIG-19-010)
 - CMS-HIG-19-010 analysis vetoed events with btagged jets → orthogonal to our selection
- Best fit values: $(\kappa_t, \kappa_b) = (-0.73, 1.58)$

Summary


• First results constraining the bbH cross section for the SM Higgs boson are presented in 4 final states, e μ , e τ_h , $\mu\tau_h$, $\tau_h\tau_h$:


- Observed (Expected) 3.7 (6.1) upper limits on bbH signal strength
- Constraints on Higgs boson coupling to top and bottom:

$$(\kappa_{t,}\kappa_{b}) = (-0.73, 1.58)$$

- Statistically limited analysis in addition to the large theory uncertainties
- Good prospects for combining the results with Run 3 data and searches in different final states
- Link to CMS-PAS-HIG-23-003

Contact

Deutsches Elektronen-Synchrotron DESY

www.desy.de

Maryam Bayat Makou CMS - DESY maryam.bayat.makou@desy.de