

 $\mathscr{L}_{UV} \to \mathscr{L}_{SD} + \mathscr{L}_{SM_0} + \mathscr{L}_{int} \to \mathscr{L}_{SM} + \dots$

Searches for Higgs-Like and other Heavy Resonances in ATLAS

Jackson Barr on behalf of the ATLAS Collaboration

 $V = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \Phi_{1}^{\dagger} \Phi_{1} \Phi_{2}^{\dagger} \Phi_{2}^{\dagger} \Phi_{2} + \lambda_{4} \Phi_{1}^{\dagger} \Phi_{2} \Phi_{2}^{\dagger} \Phi_{1} + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left(\Phi_{2}^{\dagger} \Phi_{1} \right)^{2} \right],$

Introduction

- Searches for new heavy Higgs-like resonances encompasses a wide range of theoretical models and potential final states, e.g. 2HDM, CH, TRSM, HVT etc. $\mathcal{L}_{UV} \rightarrow \mathcal{L}_{SD} + \mathcal{L}_{SM} + \mathcal{L}_{im} \rightarrow \mathcal{L}_{SM} + \cdots$
 - Searches for these types of models occur across multiple different analysis groups within ATLAS going to highlight a few recent results covering V γ and XH type resonances

Search for highmass Wγ and Zγ resonances using hadronic W/Z boson decays from 139 fb⁻¹ of pp collisions at √s= 13 TeV with the ATLAS detector

<u>JHEP 07 (2023) 125</u>

Search for the $Z\gamma$ decay mode of new high-mass resonances in $p \ p$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

Phys. Lett. B 848 (2024) 138394

Motivation

- Investigating V_{γ} final states allow searches for both neutral, X⁰, and charged, X[±], scalars predicted by different BSM theories e.g. HVT
- Pair of analyses looks for spin-1 charged bosons and spin-0/2 neutral bosons from production of gluon-gluon fusion or $q\bar{q}$ annihilation
- Follow up on previous partial Run 2 searches, <u>PRD.98.032015</u> and <u>JHEP 10 (2017) 112</u> in hadronic and leptonic final states respectively
- Hadronic analysis better probes high masses and leptonic analysis covers lower masses much smaller backgrounds

Event Selection and Reconstruction

- Hadronic analysis categorises using both b-tagging and the D_2 substructure variable to better select W/Z candidates
- At high pT, leptons highly collimated and sub-leading electron often mis-identified as photon – leptonic analysis used custom BDT trained for both cases

Selection	Muon		Electron	Electron as photon	Photon	
p_{T}	> 10 GeV		> 10 GeV	> 50 Gev	> 15 GeV	
$ \eta $	< 27		< 2.47	< 2.47	< 2.37	
	< 2.1	Excl	ude [1.37, 1.52]	Exclude [1.37, 1.52]	Exclude [1.37, 1.52]	
$ d_0 /\sigma_{d_0}$	< 3		< 5			
$ z_0 \sin \theta $	< 0.5 mm		< 0.5 mm			
Identification	Medium		Mixed	MVA	Tight	
Isolation	Track-based Tight	Tra	ck-based Tight		Loose	
$\Delta R(\text{track}, \gamma)$				< 0.1		
<i>ee</i> or $\mu\mu$ pair	\geq 2, opposite charge					
$e\gamma$ pair	$\Delta R(e,\gamma) < 1$					
	$ p_{\rm T}^e - p_{\rm T}^{\gamma} /p_{\rm T}^{e { m or} \gamma} > 5\%$					
Categorization	lepton pair closest to $m_Z = 91.2$ GeV, decide if electron channel or muon channel					
	$ m_{\ell\ell}^{\text{corrected}} - m_Z < 15 \text{ GeV}, m_Z = 91.2 \text{ GeV}$					
Event selections	Trigger match, overlap removal					
	$p_{\rm T}^{\gamma}/m_{Z\gamma} > 0.2$; signal region: $200 < m_{Z\gamma} < 3500$ GeV					
V	Variable Types			MVA Variables	5	
Calorimeter Shower R. R. A. R. A. F.						

Variable Types	MVA Variables			
Calorimeter Shower	$R_{\eta}, R_{had}, R_{\phi}, \Delta E_s, E_{ratio}$			
Track-Based	E/p, eProbabilityHT, Δ η ₁ , d ₀ , n _{innermost} , n _{Pixel} , n _{Si} , n _{TRT}			
Additional	$\Delta \phi_{rescaled}$			
JINCT 44 (2010) D12000				

JINST 14 (2019) P12006

Results

- Signal modelled by double-sided crystal ball function for both analyses and a data driven background estimate is used
- Background dominated by $Z+\gamma$ (~91%) and Z+jets (10%) determined by fit of photon isolation variable
- Upper limits on x-sections set from 1 6.8 TeV for Hadronic channel and 220 – 3400 GeV for leptonic channel
- **factor of two improvement in the limits** relative to what expected increase from integrated luminosity only

Leptonic $m_{7\nu}$ distribution

Hadronic $m_{J\gamma}$ distribution

Search for pair production of boosted Higgs bosons via vectorboson fusion production in the bbbb final state using pp collisions at √s=13TeV with the ATLAS detector

ATLAS-CONF-2024-003

Motivation

- Higgs trilinear self-coupling (κ_{λ}) and quartic coupling (κ_{2V}) yet to be precisely measured
- First ATLAS study of boosted VBF channel considers non-resonant SM and resonant production
- Considering two different resonant models
 - Narrow Width $\Gamma_X = 40$ MeV (2HDMs)
 - $\circ~$ Broad Width Γ_X = 0.2 m_X

Analysis Strategy

- Higgs boson candidates identified with boosted H→bb (Xbb) tagger, <u>ATL-PHYS-PUB-2020-019</u>
- SR defined by $X_{\rm HH}$ <1.6, VR/CR by $X_{\rm HH}$ <100/170
- Large multi-jet background modelled with data driven background estimate using 1Pass region
- Signal separated from background using a BDT, resonant analysis uses resonance mass as parameterised variable

Relevant Objects	Kinematics used in training
Higgs Boson Candidate $(H_i, i = 1, 2)$	$p_{\mathrm{T}}^{H_i}, \eta_{H_i}$
Di-Higgs System (HH)	$p_{\mathrm{T}}^{HH},\eta_{HH},m_{HH}$
VBF Jets $(j_i, i = 1, 2)$	$p_{\mathrm{T}}^{j_i}, \eta_{j_i}, E_{j_i}$

Results

- Combination of boosted and resolved analyses excludes κ_{2v}=0 at 3.8σ, (see yesterday's <u>talk by Shahzad</u> for non-resonant discussion)
- No significant excesses observed in resonant analysis and upper limits are set from 1 5 TeV in the narrow width assumption and from 1.2 – 2 TeV in the broad width assumption

Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states using √s=13 TeV pp collisions with the ATLAS detector

Phys. Rev. D 108 (2023) 052009

Motivation

- Search for heavy resonance Y decaying to SM Higgs boson and another particle X
- Only constraint required is a hadronically decaying X, quite model independent but HVT model used as benchmark for x-section upper limits
- Large Y masses result in mostly boosted X and H with separate resolved X region also considered
- Identified Higgs candidate by boosted $H \rightarrow bb$ (Xbb) tagger

 $Y \sim \infty$

Anomaly Detection

- Analysis uses novel Anomaly Detection (AD) to identify boosted Xcandidates
- Variational Recurrent Neural Network (VRNN), <u>JINST 16 P08012</u>, trained over jet 4-vectors from data – model reduces events to small latent dimension and then attempts to reconstruct them again
- Events where the model fails to be accurately reconstructed are considered more anomalous – cut on score to get anomalous SR
- Data driven background estimate formed using DNN reweighting derived in Higgs mass sidebands, learns to weight Xbb tagger fail to Xbb tagger pass region

- No significant excesses observed over SM prediction are observed using either AD approach or using more standard event selections
- AD method tested on a range of signals and compared to signal regions designed specifically for those signatures and showed comparable results in most cases. When tested on a different type of model (Dark jets), Anomaly SR greatly outperforms other standard regions – Anomaly Detection allows for much more model independent searches

Transformer Neural Networks for Identifying Boosted Higgs Bosons decaying into bb and cc in ATLAS

ATL-PHYS-PUB-2023-021

Boosted Higgs Tagging

- **GN2X** is a transformer based Xbb tagger that replaces the previous subjet based model used within ATLAS (previous version used in the anomaly detection and VBF HH4b analyses shown here)
- Trained to discriminate between boosted H \rightarrow bb, H \rightarrow cc, hadronic top and QCD jets, previous model did not include H \rightarrow cc as a category
- Includes auxiliary tasks to perform vertex and track origin prediction

Simulation Performance

- At a 60% signal efficiency, GN2X achieves more than doubles the top and QCD rejection
- Trained on modified Higgs sample with increased decay width to reduce background mass sculpting – keeps sculpting to within 20% in bulk of distribution
- Calibration efforts underway, future boosted Higgs searches with hadronic decays will greatly benefit from new model

Summary

$\mathcal{L}_{UV} \to \mathcal{L}_{SD} + \mathcal{L}_{SM_0} + \mathcal{L}_{int} \to \mathcal{L}_{SM} + \dots$

- ATLAS has significant program dedicated to probing decays from heavy resonances
- •_x Many improvements in results driven by novel approaches to analyses and tools used to better identify objects used within them
- New techniques are continually being developed and tested to allow us to perform even better results with the new Run 3 data that is currently incoming!

 $\mathcal{L}_{UV} \to \mathcal{L}_{SD} + \mathcal{L}_{SM_0} + \mathcal{L}_{int} \to \mathcal{L}_{SM} + \dots$

Thank You For Listening

 $Z = \begin{bmatrix} V &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right) + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 \\ + \lambda_3 \Phi_1^{\dagger} \Phi_1 \Phi_2^{\dagger} \Phi_2 + \lambda_4 \Phi_1^{\dagger} \Phi_2 \Phi_2^{\dagger} \Phi_1 + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \left(\Phi_2^{\dagger} \Phi_1 \right)^2 \right],$