Higgs self-coupling at the FCC-hh

<u>Elisabetta Gallo,</u> Angela Taliercio, Birgit Stapf, Paola Mastrapasqua, Michele Selvaggi, Christophe Grojean and Kerstin Tackmann Grenoble, 9 April 2024

R. Petrossian-Byrne/N. Craig

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Higgs potential

In the SM, the coupling λ determines the Higgs potential shape

It is measured via Higgs self-coupling, e.g. directly via di-Higgs production

• It would be the first evidence of a particle interacting with itself

However the cross section is small due to the negative interference with the top-box diagram, so that $\sigma(ggHH) \simeq 1/1000 \ \sigma(ggH)$

Salam, Wang, Zanderighi, "The Higgs boson turns ten", Nature 607 (2022) 41

FCC-hh

Layout as presented in the Midterm report of the FCC feasibility study (February 2024) : 90.7 km ring, 8 surface points

1st stage: FCC-ee at different energies (Z/WW/ZH/tt)

2nd stage: FCC-hh, hadron-hadron collider at ~100 TeV, time-scale is driven by the high-field magnet development

FCC-hh

At the FCC-hh:

 $30 \ ab^{-1}$ of integrated luminosity, about 10X the one at the end of HL-LHC at a centre-ofmass energy of 100 TeV (2/fb per day initially and up to 8/fb day for nominal parameters)

It will allow for Higgs physics:

- To measure k_{λ} with percent precision
- To measure rare decays ($\mu\mu, Z\!\gamma, c\bar{c}$)..
- To go to higher p_T where backgrounds could be different

ggHH cross-section X40 times higher than at the HL-LHC

Discussion at 80 and 120 TeV also started

400X HH events at FCC-hh compared to HL-LHC, 20X precision in k_{λ}

Detector concept

Reference detector:

- •Silicon tracking detector
- •Electromagnetic with LAr and hadron calorimeter with Pb/steel and scintillating tiles
- •Outer muon system with drift tubes

Pile-up of 1000 at these luminosities, High granularity, timing detectors, etc. will be needed to have performances like for LHC now

Detector reference design: 50 m overall length, 20m diameter; central solenoid and 2 forward solenoids with 4T field; coverage up to $|\eta| < 6$ (FCC-hh CDR)

Fast simulation at the FCC-hh

MC samples were generated and simulated with DELPHES, which uses a ParticleFlow algorithm with parametrized object resolutions and efficiencies in two Scenarios

It assumes a perfect detector a la LHC Run 2 (Scenario I) and a less optimistic scenario a la CDR (Scenario II)

Use of the Key4HEP project: EDM4HEP format for the events, processed via the FCCanalyses framework.

b-jets are reconstructed with the anti-KT algorithm with R=0.4 and their efficiency is parametrized as a function of the p_T

The effect of pile-up is in the parametrization of efficiencies and resolutions

Example of muon parametrization

	Relative momentum resolution		Efficiency		
Object	Scenario I	Scenario II	Scenario I	Scenario II	
Electrons	0.4-1%	0.8-3.0%	76-95%	72-90%	
Muons	0.5-3%	1.0-6.0%	90-99%	88-97%%	
	Medium b-tag	80-90%	76-86%		

Status of measurements and projections

https://arxiv.org/abs/2004.03505

 $-0.4 < k_{\lambda} < 6.3$ (ATLAS Run 2 H+HH in PLB 843 (2023) 137745) $-1.2 < k_{\lambda} < 7.5$ (CMS Run 2 H+HH in CMS-PAS-HIG-23-006)

collider	Indirect- h	hh	combined
HL-LHC 78	100-200%	50%	50%
ILC_{250}/C^3-250 51, 52	49%	_	49%
ILC_{500}/C^3 -550 [51], [52]	38%	20%	20%
$CLIC_{380}$ 54	50%	—	50%
$CLIC_{1500}$ 54	49%	36%	29%
$CLIC_{3000}$ 54	49%	9%	9%
FCC-ee 55	33%	—	33%
FCC-ee (4 IPs) 55	24%	—	24%
FCC-hh [79]	-	3.4 - 7.8%	3.4-7.8%
$\mu(3 \text{ TeV})$ [64]	-	15-30%	15-30%
$\mu(10 \text{ TeV})$ 64	-	4%	4%

From Snowmass report arXiv:2209.07510

 $k_{\lambda} = \lambda_{measured} / \lambda_{SM}$

In best systematic scenario (Scenario I, a la LHC Run 2),

3.4 % projected uncertainty on k_{λ}

7

Update of projections: $bb\gamma\gamma$, $bbll + E_T^{miss}$

ggHH production only studied here, two decay channels:

 $bb\gamma\gamma$: traditional channel, one of the most sensitive due to the EM resolution, in spite of the low branching ratio (0.26%)

Signature: two b-jets, two photons at the H mass

 $bb + ll + E_T^{miss}$: higher branching ratio (3.24%) but missing ET makes HH signal extraction more difficult. Interesting as sensitive to pile-up.

It includes:

 $b\bar{b}WW(l\nu l\nu) + b\bar{b}\tau\bar{\tau}(l\nu l\nu) + bbZZ(ll\nu\nu)$ Signature: a pair of opposite-sign (OS) electrons or muons, same (SFOS) or different flavor (DFOS) 8 flavor, two b-jets

$bb + ll + E_T^{miss}$ channel

S/B

Cut-based analysis exploiting the topology

- two b-jets close in space and with m_{bb} around the Higgs mass
- Two leptons close in space and separated from the b-jets
- Large separation between the missing energy and the b-jets
- Top-pair is the main background, use m_{lb} for further suppression
- Use transverse mass m_{T2} for the statistical inference

 $bb + \gamma\gamma$

Selection steps for $bb\gamma\gamma$

1) DNN-based tagger to suppress tth, which is the main background $(\pi t \overline{t} U \rightarrow w) \rightarrow 2 \times \pi (\pi a U U \rightarrow b h w))$

 $(\sigma(t\bar{t}H \to \gamma\gamma) \simeq 3 \times \sigma(ggHH \to bb\gamma\gamma))$

2) Split events in two categories and train 2 DNNs in the two regions: $m_X < 350 \ GeV, m_X > 350 \ GeV, m_x = m_{bb\gamma\gamma} - m_{bb} - m_{\gamma\gamma} + 250$ The shape of m_X depends on k_λ

2a) Define a medium and high category based on the DNN score, exclude the region with DNN score <0.6

Selection steps for *bbyy*

3) Split events in addition in m_{bb} bins, central + sidebands

4) Use $m_{\gamma\gamma}$ in the statistical inference to extract the signal in the eight resulting categories

Systematics

Source of uncertainty	Syst. 1	Syst. 2	Syst. 3	Applies to	Correlated
Common systematics					
b-jet ID / b-jet	0.5%	1%	2%	Signals, MC bkgs.	1
Luminosity	0.5%	1%	2%	Signals, MC bkgs.	\checkmark
Signal cross-section	0.5%	1%	1.5%	Signals, MC bkgs.	\checkmark
$b\bar{b}\gamma\gamma$ systematics					
γ ID / γ	0.5%	1%	2%	Signals, MC bkgs.	×
$b\bar{b}\ell\ell + E_{\rm T}^{\rm miss}$ systematics					
Lepton ID / lepton	0.5%	1%	2%	Signals, MC bkgs.	X
Data-driven bkg. est.	3. 35	1%	1%	V + jets	×
Data-driven bkg. est.	1. - 2	-	1%	$tar{t}$	×

Applied as log-normal uncertainty

Results

Fit from a parametrized dependence of the ggHH cross-section vs the trilinear coupling, I-dimensional fit with all other couplings fixed to their SM value (Scenario I, lines are Syst1/Syst2/Syst3)

$$bbll + E_T^{miss}$$
: Scenario I + Syst 1
$$k_{\lambda} = 1.00^{+0.23}_{-0.22}$$

Can we reach 1% on k_{λ} ?

We could ask the inverse question, how well we should reconstruct our objects to decrease the uncertainty

Parametrize the resolution on the invariant mass of the two b-jets and see how it should be improved with an optimal calorimeter

m(bb)	Stat only	Syst I		
resolution	Scenario I			
at M(H)				
No	3.2%	3.6%		
assumption				
10 GeV	2.5%	2.7%		
5 GeV	2.0%	2.3%		
3 GeV	1.8%	2.0%		

Precision on k

A precision of <~2 % could be reached with a m(bb) resolution of 3 GeV at the Higgs mass

Summary

- We have restarted studies on Higgs physics at the FCC-hh
- We are looking especially at double Higgs production as benchmark channel
- Two channels studied for now, a re-optimized study of $bb\gamma\gamma$ and a new channel $bbll + E_T^{miss}$
- As expected bbγγ would drive the final precision. The present projection is around 3.6%, but a precision on the trilinear coupling of below 2% could be achieved with an optimal calorimeter and more refined analysis

Fron Snowmass report arXiv:2209.07510

Parameter	FCC-hh		HL-LHC	LHC
collision energy cms [TeV]	80- 1	116	14	14
dipole field [T]	14 (Nb ₃ Sn) – 20	0 (HTS/Hybrid)	8.33	8.33
circumference [km]	90	.7	26.7	26.7
beam current [A]	0.5		1.1	0.58
bunch intensity [10 ¹¹]	1	1	2.2	1.15
bunch spacing [ns]	25 25		25	25
synchr. rad. power / ring [kW]	rad. power / ring [kW] 1020-4250		7.3	3.6
SR power / length [W/m/ap.]	<mark>13-54</mark>		0.33	0.17
long. emit. damping time [h]	0.77-0.26		12.9	12.9
beta* [m]	1.1 0.3		0.15 (min.)	0.55
normalized emittance [µm]	2.2		2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5 30		5 (lev.)	1
events/bunch crossing	170	1000	132	27
stored energy/beam [GJ]	6.1-8.9		0.7	0.36
integrated luminosity [fb ⁻¹]	20000		3000	300

From Fabiola Gianotti, FCC Week London 2023

	DFOS	Analysis category SFOS, no Z-peak	SFOS, on Z-peak		
Main signals	$bar{b}WW^*$, $bar{b} au au$	$bar{b}WW^*, bar{b} au au$	$b\bar{b}ZZ^{*}, b\bar{b} au au$		
Selection variable		Criterion			
Lepton pair Number of b-jets	$e\mu$	$ee \text{ or } \mu\mu \\ \geq 2$	$ee ext{ or } \mu\mu$		
т _{ьь}		85 - 105 GeV			
ΔR_{bb}		< 2			
$\Delta R_{\ell\ell}$	< 1.8				
H_{T2}^{ratio}		> 0.8			
$m_{\ell b}^{\rm reco}$		> 150 GeV			
$\Delta \phi(\ell \ell, E_T^{\text{miss}})$		< 2	< 1.2		
$m_{\ell\ell}$	10 -	80 GeV	81 - 101 GeV		
$\Delta \phi(\ell \ell, E_T^{\text{miss}})$ -categorie	s < 1.2 ("low") ar	nd $1.2 - 2.0$ ("high")	-		
					

Table 3: Summary of the event selection and categorization.

Present CMS Run 2 results

https://cds.cern.ch/record/2882424/files/HIG-23-006-pas.pdf

						HH production at 14 TeV LHC at (N)LO in QCD
						 M _H =125 GeV, MSTW2008 (N)LO pdf (68%cl)
					10 ²	Provide a state of the state of
						MD-HH (EFT loop is
	Best f	it $\pm 1\sigma$	95% CL	interval	1	-p-improved)
Hypothesis	Expected	Observed	Expected	Observed	[q] ⁰	Pp→HHij (VBF)
Other couplings fixed to SM	$1.0^{+4.6}_{-1.7}$	$3.1^{+3.0}_{-3.0}$	[-2.0, +7.7]	[-1.2, +7.5]	α(N)L	NR . HUU
Floating ($\kappa_{\rm V}, \kappa_{\rm 2V}, \kappa_f$)	$1.0^{+4.7}_{-1.8}$	$4.5^{+1.8}_{-4.7}$	[-2.2, +7.8]	[-1.7, +7.7]	10 ⁰	
Floating ($\kappa_V, \kappa_t, \kappa_b, \kappa_{\tau}$)	$1.0\substack{+4.8\\-1.8}$	$4.7\substack{+1.7 \\ -4.1}$	[-2.3, +7.7]	[-1.4, +7.8]		pp→WHH
Floating ($\kappa_{\rm V}, \kappa_{\rm 2V}, \kappa_{\rm t}, \kappa_{\rm b}, \kappa_{\tau}, \kappa_{\mu}$)	$1.0\substack{+4.8\\-1.8}$	$4.7^{+1.7}_{-4.2}$	[-2.3, +7.8]	[-1.4, +7.8]	10 ⁻¹	744
						pp→2riii pp

-3

-2

-1

0

WAGM

2