Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs DIS2024 - Grenoble

Johann C. Voigt on behalf of the ATLAS Liquid Argon Calorimeter Group

9 April 2024

Bundesminister

und Forschung

ATLAS LAr calorimeter

- LHC provides \approx 50 proton-proton collisions per bunch crossing (BC) $\hat{=}$ every 25 ns $\hat{=}$ 40 MHz
- 140-200 simultaneous collisions at High Luminosity LHC (HL-LHC) from 2029 onwards
- Higher pileup and higher trigger rate require replacement of LAr calorimeter electronics

https://cds.cern.ch/record/1095928 [1], https://www.particles.uni-freiburg.de/dateien/vorlesungsdateien/particledetectors/kap8 [2], https://cds.cern.ch/record/331061 [3]

Digital energy reconstruction

Digital energy reconstruction

Evaluating artificial neural networks (ANN) for cell level energy reconstruction

- Recurrent neural networks (RNN)
- Convolutional neural networks (CNN)

https://cds.cern.ch/record/331061 [3], https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResultsUpgrade [4]

Convolutional neural network architecture (CNN)

- Two convolutional lavers
- Rel U activation
- 100 to 400 parameters
- 22 BC field of view

Johann C. Voigt (ATLAS LAr)

Example sequence

- Input: Signal enriched simulated detector sequences including pileup
- True energy available as training target
- OF/ANN output compared to true energy

ANNs show improved performance for overlapping pulses

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResultsUpgrade [4]

Energy reconstruction performance as a function of gap between 2 pulses

Improvements in reconstruction of overlapping pulses (gap < 20 BC)</p>

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResultsUpgrade [4]

Johann C. Voigt (ATLAS LAr)

Performance for different detector regions

- Same architecture trained for different detector regions
- Identified clusters of similar cells based on pulse shapes for future trainings

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResultsUpgrade [4], https://cds.cern.ch/record/1095928 [1]

Recurrent neural network architecture (RNN)

- Vanilla RNN with sliding window
 - Calculate output at every bunch crossing (BC)
 - Based on limited slice out of input sequence
- $\bullet~5$ cells with 8 internal dimensions \rightarrow 304 multiplications
- Field of view of 5 BC can be extended using dense layer as input

Johann C. Voigt (ATLAS LAr)

https://doi.org/10.48550/arXiv.2302.07555 [6] https://doi.org/10.1007/s41781-021-00066-y [7]

RNN firmware implementation

- Prototype in hls4ml
 - Added Intel/Quartus support for RNN
- Optimized High Level Synthesis (HLS) implementation:
 - Multiplexing support
 - Study influence of truncation/rounding
- VHDL implementation:
 - Reuse common results between RNN cells
 - Placement constraints
 - Incremental compilation

https://doi.org/10.48550/arXiv.2302.07555 [6]

Johann C. Voigt (ATLAS LAr)

Quantization aware training

- FPGA more efficient for lower bit widths
- Balance between resources and accuracy
- QKeras allows quantization already during training
- Quantization aware training (QAT) yields better results than post training quantization (PTQ)

DSP modes DSP: Float DSP: 18 hit DSP: 9 hit

Testing RNN firmware on hardware

- Test project for Stratix-10 development kit
- Data extracted over JTAG link using NIOS processor
- Bit exact match with firmware simulation
- Resolution compared to Keras as expected

CNN firmware implementation

- CNN inference implemented in VHDL
- Model architecture configurable and automatically extracted from Keras output files
- Support multiplexing
 - \blacktriangleright Design runs at 12× ADC frequency
 - Cyclically processes 12 detector cells
- Development on Intel Stratix-10 and Agilex-7 FPGA
- Calculation in 18 bit fixed point numbers
- DSP can be chained for multiply-accumulate operations

FPGA resource estimation

- \bullet Latency requirement by ATLAS trigger of $\approx 150\,\text{ns}$ met by all VHDL implementations
- All VHDL compilation targets can process required number of 384 detector cells
 - ▶ E.g. 12-fold multiplexing with 33 parallel instances
- Resource estimates based on Intel Quartus reports

FPGA	Network	Multiplex.	Detector cells	$f_{ m max}$	ALMs	DSPs
Stratix-10	RNN (HLS)	10	370	393 MHz	90 %	100%
	RNN (VHDL)	14	392	561 MHz	18%	66 %
	CNN (100 param.)	12	396	415 MHz	8 %	28 %
Agilex	CNN (100 param.)	12	396	539 MHz	4 %	13 %
	CNN (400 param.)	12	396	510 MHz	19%	50 %

- RNNs and CNNs outperform Optimal Filter, especially for overlapping signals
 - First studies on effects of new cell energy reconstruction on photon, electron and jet measurements ongoing
- VHDL implementation of RNNs and CNNs with low latency available
- RNNs and CNNs fit target FPGA and run at required clock frequency
- Tests on FPGA hardware ongoing
- Integration with off-detector electronics firmware progressing

Backup

Distribution of deviation from true energy

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResultsUpgrade [4]

Prediction in BCs without energy deposit

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResultsUpgrade [4]

CNN multiplexing concept

- One FPGA needs to fit 33 CNN instances
- Each instance uses $12 \times$ multiplexing
 - \rightarrow Design needs to run at $12\times$ the ADC frequency: 480 MHz

Example for two ADCs:

CNN multiplexing concept

- One FPGA needs to fit 33 CNN instances
- Each instance uses $12 \times$ multiplexing
 - \rightarrow Design needs to run at $12\times$ the ADC frequency: 480 MHz

Example for two ADCs:

Comparison of RNN/CNN energy resolution

https://doi.org/10.1007/s41781-021-00066-y [7]

Johann C. Voigt (ATLAS LAr)

LAr Phase-II readout overview

Sources I

- Joao Pequenao. Computer generated image of the ATLAS Liquid Argon. CERN. Mar. 27, 2008. URL: https://cds.cern.ch/record/1095928 (visited on 03/29/2021).
- [2] Karl Jakobs. Particle Detectors 2015. Chapter 8. 2015. URL: https://www.particles.unifreiburg.de/dateien/vorlesungsdateien/particledetectors/kap8 (visited on 03/21/2024).
- [3] LHC Experiments Committee, LHCC. ATLAS liquid-argon calorimeter: Technical Design Report. Technical design report. ATLAS. Geneva: CERN, 1996. URL: https://cds.cern.ch/record/331061 (visited on 04/06/2021).
- [4] ATLAS LAr Calorimeter Group. Public Liquid Argon Calorimeter Plots on Upgrade. URL: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ LArCaloPublicResultsUpgrade.

Sources II

- [5] Anne-Sophie Berthold. "Simulation Studies of Convolutional Neural Networks for the Real-Time Energy Reconstruction of ATLAS Liquid-Argon Calorimeter Signals at the High-Luminosity LHC". TU Dresden, IKTP, Dec. 21, 2023.
- [6] Georges Aad et al. "Firmware implementation of a recurrent neural network for the computation of the energy deposited in the liquid argon calorimeter of the ATLAS experiment". In: (Feb. 15, 2023). DOI: https://doi.org/10.48550/arXiv.2302.07555. arXiv: 2302.07555v1 [physics.ins-det]. URL: https://doi.org/10.48550/arXiv.2302.07555.
- [7] Georges Aad et al. "Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters". In: Computing and Software for Big Science 5.1 (Oct. 2021). DOI: 10.1007/s41781-021-00066-y. URL: https://doi.org/10.1007/s41781-021-00066-y.

- [8] Lauri Antti Olavi Laatu. "Development of artificial intelligence algorithms adapted to big data processing in embedded (FPGAs) trigger and data acquisition systems at the LHC". Presented 03 Oct 2023. Aix-Marseille U., 2023. URL: https://cds.cern.ch/record/2875588.
- [9] Nemer Chiedde. "Implementation of embedded artificial intelligence algorithms in the readout system of the ATLAS liquid argon calorimeter". Presented 21 Nov 2023. PhD thesis. Aix-Marseille Université, 2023. URL: https://cds.cern.ch/record/2884186 (visited on 03/21/2024).