

Upgrade of ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

Oleg Solovyanov on behalf of the ATLAS Tile Calorimeter

DIS2024, 8-12 April, Grenoble

Outline

- ATLAS Calorimetry and HL-LHC
- Tile Calorimeter HL-LHC Upgrades
 - Overview
 - Mechanics
 - PMTs and HV dividers
 - On-detector electronics
 - Off-detector electronics
 - LV and HV power supplies
 - Calibration systems
 - Assembly, tests and installation
 - Test beams and demonstrator
- Summary

ATLAS Calorimetry

- Complete replacement of the on-detector electronics to meet new radiation, trigger and readout performance criteria
- High-performance FPGA, complex firmware, high-speed optical links
- New off-detector electronics, new power supplies

Tile Calorimeter

- Hadron non-compensating sampling calorimeter
 - Steel as absorber
 - Scintillating tiles as active medium
 - Design resolution for jets $\Delta E/E = 50\%/\sqrt{E+3\%}$
- Three longitudinal layers, total thickness of about 7 $\!\lambda$
- Long barrel $|\eta|$ <1.0, extended barrel 0.8 < $|\eta|$ < 1.7
- 0.1x0.1 $\Delta \eta x \Delta \phi$ cell granularity
- 3 mm thick trapezoidal shape scintillating tiles (PSM, BASF polystyrene + dopants) oriented perpendicular to beam axis, wrapped in Tyvek[®] paper
- Readout via green WLS fibres (Kuraray Y11(200)MSJ) connected to both short edges of scintillating tiles
- Hamamatsu R7877 PMTs, located in a module's girder, collect light from the fibre bundles

Tile Calorimeter HL-LHC Upgrade Overview

- New on- and off-detector electronics
- 40 MHz continuous data read-out
- Fully digital trigger output for LO
- Improved radiation hardness and redundancy
- New mechanical supports for front-end electronics
- Replacement of 10% of PMTs
- New power supplies for HV and LV
- Upgraded calibration systems
- Production phase in many areas, some already completed and delivered

Mechanics

- PMTs and on-detector electronics are housed in "drawers"
- New design have 4 mini-drawers (MD)
 - Robust mechanical links
 - New cooling system
 - Special design of micro-drawers for extended barrels
 - Special installation tooling
 - Simplifies installation and maintenance
- Services and tooling
- Production complete and delivered

PMT and HVAD

- 10% of the most degraded PMTs will be replaced by an improved version – Hamamatsu R11187
 - Production and certification on-going
- Passive high voltage dividers will be replaced with active dividers, more stable at high currents for HL-LHC
 - Production complete and delivered
- PMT block test bench
 - Prototype finished
 - Production to start soon

On-detector electronics

- FENICS front-end board
 - Two gains with 1:40 ratio, 0.2->1000pC
 - Slow integrating channel
 - Embedded charge injection calibration
 - Production and certification on-going
- MainBoard
 - Process and control 12 channels
 - Fast 12-bit 40Ms/s ADCs
 - Connects to DaughterBoard
 - Production complete
- DaughterBoard
 - Collects and sends digitised data to the off-detector electronics via optical links
 - GBT protocol at 9.6 Gb/s, using SFP+
 - Kintex Ultrascale FPGA
 - Final prototype DB6v4 is being produced

Off-detector electronics

- Preprocessor (PPr) and TDAQi
 - CPM compact processing module
 - Carrier ATCA base-board to host CPMs
 - Kintex UltraScale+ FPGAs
 - Receives data from DaughterBoards
 - Calculates energy and time
 - Calculates trigger primitives
 - Sends data to L0 trigger and DAQ
- Several prototypes made
- Final design is being prepared

The PreProcessor module for the ATLAS Tile calorimeter at the HL-LHC

LV and HV power supplies

- Three-stage low-voltage (LV) system
 - Bulk 200V AC-DC
 - 10V DC-DC converters
 - Point-of-load regulators
 - Pre-production ongoing
- Remotely regulated high-voltage (HV)
 - <1kV over 100m cable for 10k channels
 - Remote regulation for individual channels, outside of high-radiation area
 - Hamamatsu HV supply units
 - Moving towards pre-production

Calibration systems

- Calibration systems follows DAQ upgrade
- Laser calibration system for PMTs
 - New DAQ and control interface
 - Pile-up simulation via LED matrix
 - New optical line to mix pulsed and dc light
 - Final design and prototype tests
- Cs137 movable source
 - New on- and off-detector electronics using optical links
 - Updated hydraulics
 - Preparing for production

Assembly, tests and installation

- Front-end electronics to be assembled from multiple components into superdrawers before installation
- PROMETEO portable test bench is used to certify the functionality and performance
- Test results and boards IDs saved in the installation database
- Production complete or on-going
- Assembly and installation plans have been prepared

Test beams and demonstrator

- Test beams
 - Fixed target test beams of various particles and energies at SPS at CERN
 - Validate new electronics in more realistic conditions
 - Full slice tests
 - Performance measurements
 - Encouraging results
- Demonstrator
 - Backward-compatible hybrid demonstrator installed since 2019 on detector
 - In-situ performance tests
 - Training for future experts

Summary

- The HL-LHC programs challenges the detector and detector electronics in many aspects, including high radiation doses and high pile-up
- ATLAS Tile Calorimeter is undergoing a major upgrade of its on- and offdetector electronics to cope with new challenges of HL-LHC
- Many upgrade deliverables have been already produced
- Test beam campaigns help to validate new designs and involve new persons
- Upgrade demonstrator module is already taking data in ATLAS LHC, providing new information and training of future experts