LHCS DIS2024 31st International Workshop on Deep Inelastic Scattering and Related Topics

LHCb upgrade II Xuhao Yuan (IHEP, CAS) On behalf of LHCb collaboration 2024-04-09

8-12 April 2024 Grenoble, France | dis2024.org

Main physics goal

To study b & c sectors on CPV, rare decays, new physics...

$$\begin{split} &\Delta p/p = 0.5\% \ @ < 20 \ {\rm GeV}/c, 1\% \ @ < 200 \ {\rm GeV}/c \\ & {\rm IP\ resolution} \sim 15 \ + \ 29/p_T \ [{\rm GeV}/c] \ \mu m \\ & {\rm Decay\ time\ resolution\ 45\ fs\ } (B_s \rightarrow J/\psi\phi) \\ & {\rm Kaon\ ID\ \sim\ 95\%\ for\ 5\%\ } \pi \rightarrow K\ {\rm mis-ID\ probability} \\ & {\rm Xuhao\ Yuan,\ IHEP} \end{split}$$

LHCb physics performance in Run 1 & 2

A decade of important discoveries and precision measurements (9 fb⁻¹ pp data by end of 2018)

More physics results reported by my LHCb colleagues Chenxi Gu, Cesar Da Silva, Camilla De Angelis, Alessandro Bertolin, Chen Chen, Cynthia Nunez

Upgrade I (U1), started in LS2 \mathcal{L}_{max} ~2x10³³ cm⁻²s⁻¹ \mathcal{L}_{int} ~50 fb⁻¹

Upgrade II (U2), starts in LS4 \mathcal{L}_{max} ~1.5x10³⁴ cm⁻²s⁻¹ \mathcal{L}_{int} ~300 fb⁻¹

Some smaller detector consolidation and enhancements in LS3 (2026) ⇐ U1b

Upgrade I: a brand new detector

M4 M5

ECAL HCAL

readou

Side View

SciFi

Tracker

RICH2

Magnet

Higher luminosity (5x $\mathcal{L}_{Run1\&2}$) results in

Higher rate, pile up, occupancy, fluence

VELO: hybrid pixel detector

- Closer to the beam
 - (from 8.2 mm to 5.1 mm)
- New RF box
 - MAX fluence: 8x10¹⁵ MeVn_{eq}cm⁻²

UT: Si Strip detector

- Higher coverage, segmentation, resolution
- Speed up tracks reconstruction
 & reduce P_{GhostTrk}

SciFi: Scintillating fibers detector

upgrade

RICH1

- 3 station with 4 detection layers
- 2x2.5 m long modules with Readout SiPMs at the outer edge

readout 2 x ~ 2.5 m

5

The Tracking System in Upgrade II

6

High pile-up in Upgrade II

VELO spacial Resolution

Run 3 PV distance

← VELO acceptance

In Upgrade II \mathcal{L}_{max} ~1.5x10³⁴ cm⁻²s⁻¹ \mathcal{L}_{int} ~300 fb⁻¹

- ~ 40 visible interactions/Xing
- High pile-up induces PV spatial separation of the same order as VELO resolution \rightarrow PV unresolvable
- \succ Ensure $\varepsilon_{trigger}$ at high pileup condition

VELO: 4D detector with timing

mm

4.5

3.5

3

VELO Acceptance

- VELO forward

 σ_t (Track)=20 ps restores the performance to U1 level

Xuhao Yuan, IHEP

Scenario B

Balance btw Φ_{eq} and σ_{Hit}

- $\succ \sigma_{\rm IP} = \sigma_{\rm extrap} + \sigma_{\rm scatter}$
- Two different layouts optimized
- Sensor R&D, candidates: 3D pixel, Planar, LGAD, CMOS ...
- timing ~50 ps
- Radiation hardness (max ~6x10¹⁶n_{eq}/cm²)
- R&D on 28 nm technology: PicoPix, IGNITE
- □ Replaceable modules, thinner or no RF foil, robust 3D printed Ti cooling substrate...

Upgrade II UT

Channel occupancy [%]

0.42	0.45	0.47	0.49	0.52	0.54	0.57	0.60	0.60
0.46	0.49	0.52	0.56	0.59	0.63	0.68	0.74	0.77
0.53	0.58	0.62	0.68	0.73	0.83	0.89	1.00	1.06
0.64	0.70	0.77	0.86	0.96	1.10	1.26	1.48	1.63
0.78	0.88	0.97	1.13	1.27	1.54	1.81	2.34	2.72
0.96	1.10	1.23	1.45	1.68	2.05	2.63	2.84	3.87
1.28	1.45	1.54	1.81	2.04	2.57	3.42	4.48	3.95 5.13

Current UT optimized for $\mathcal{L}_{Run 3\&4}$ Upgrade II luminosity $1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} (\mathbf{x7.5} \mathcal{L}_{Run 3\&4})$ > The occupancy (max ~10%) will compromise the performance > Radiation does ($3 \times 10^{15} n_{eq}/\text{cm}^2$) too high for current sensor

Upgrade II UT:

CMOS MAPS technique applied

Very promising and cost effective for large area pixel detectors.

Beam pipe

2024/04/09

[a.u.

Efficiency [8.0

0.4

R&D status

Upgrade II UT software

- Preliminary studies on
 - \Box Track efficiency for $B^- \to D^0 K^-$, $D^0 \to K_s \pi^+ \pi^-$, $K_s \to \pi^+ \pi^-$ **Optimizing UT coverage**
 - Detector simulation and performance

Two choice of CMOS tech: HV-CMOS & Small electrode CMOS Extensive tests using ATLASPix: lab test with cosmic ray and radioactive sources, testeam at DESY & CSNS @ 2022

Hitmap with Fe55 source

R.L[%X0]

Track efficiency vs X coverage

Particle Identification (PID) Detectors

Key observables in flavor physics

Current	: LHCb	Upgr	ade I	Upgrade II
(up to	$9{\rm fb}^{-1}$)	$(23{\rm fb}^{-1})$	$(50 {\rm fb}^{-1})$	$(300{\rm fb}^{-1})$
4°	[9, 10]	1.5°	1°	0.35°
$32\mathrm{mrac}$	d [8]	$14\mathrm{mrad}$	$10\mathrm{mrad}$	$4\mathrm{mrad}$
6%	[29, 30]	3%	2%	1%
36×10^{-5}	$^{-4}[34]$	8×10^{-4}	$5 imes 10^{-4}$	2×10^{-4}
33×10^{-1}	$^{-4}$ [35]	$10 imes 10^{-4}$	$7 imes 10^{-4}$	$3 imes 10^{-4}$
29×10^{-1}	$^{-5}$ [5]	$13 imes 10^{-5}$	8×10^{-5}	3.3×10^{-5}
11×10^{-1}	$^{-5}$ [38]	5×10^{-5}	3.2×10^{-5}	1.2×10^{-5}
18×10^{-1}	$^{-5}$ [37]	$6.3 imes 10^{-5}$	4.1×10^{-5}	1.6×10^{-5}
⁻) 69%	[40, 41]	41%	27%	11%
_		_		0.2
0.10	[52]	0.060	0.043	0.016
0.10	[52]	0.060	0.043	0.016
$+0.41 \\ -0.44$	[51]	0.124	0.083	0.033
0.32	[51]	0.093	0.062	0.025
+0.17 -0.29	[53]	0.148	0.097	0.038
0.20				
0.044	[12]	0.025	0.017	0.007
0.12	[61]	0.034	0.022	0.009
0.026	[62, 64]	0.007	0.005	0.002
	Current (up to 4° 32 mrad 6% $36 \times 10^{-}$ $33 \times 10^{-}$ $29 \times 10^{-}$ $11 \times 10^{-}$ $18 \times 10^{-}$ - 69% - 0.10 0.10 +0.41 -0.41 -0.29 0.044 0.12 0.026	Current LHCb (up to 9 fb ⁻¹) 4° [9,10] 32 mrad [8] 6% [29,30] 36×10^{-4} [34] 33×10^{-4} [35] 29×10^{-5} [5] 11×10^{-5} [38] 18×10^{-5} [37] $^{-}$) 69% [40,41] $^{-}$ 0.10 [52] $^{+0.41}_{-0.44}$ [51] 0.32 [51] $^{+0.17}_{-0.29}$ [53] 0.044 [12] 0.12 [61] 0.026 [62,64]	Current LHCb (up to 9 fb ⁻¹) Uppr (23 fb ⁻¹) 4° [9,10] 1.5° 32 mrad [8] 14 mrad 6% [29,30] 3% 36×10^{-4} [34] 8×10^{-4} 33×10^{-4} [35] 10×10^{-4} 29×10^{-5} [5] 13×10^{-5} 11×10^{-5} [38] 5×10^{-5} 18×10^{-5} [37] 6.3×10^{-5} $ -$ 0.10 [52] 0.060 0.10 [52] 0.060 -0.44 [51] 0.124 0.32 [51] 0.093 $+0.17$ -0.29 [53] 0.148 0.044 [12] 0.025 0.12 0.12 [61] 0.034 0.026	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

LHCC-2021-012

Upgrade II will fully realize the flavor physics potential of the HL-LHC

Further pursue a broad physics programme

- Spectroscopy
- High precision EW and Higgs
- Dark sector
- Exotic search
- Heavy ions and fixed target
- Success of the physics programme relies on
 ➢ HL-LHC providing LHCb ~ 50 fb⁻¹/year during Run 5&6
- A detector with similar or better performance as the present one for Upgrade I

LHCb

- Upgrade I: installation completed
- Upgrade II: starts in LS4, R&D now
- LHCb Upgrade II to fully exploit HL-LHC for flavor physics and beyond
- FTDR approved and now in R&D phase
 - Next: TDR @2026, construction, installation and eventually operation for physics

More physics results can be expected from LHCb

Physics Case for an LHCb Upgrade II

CER	
/	
LHO	Cb Upgrades and operation at 10 ⁴⁴ cm ²⁴ s
LHO G. A. Efthy	Cb Upgrades and operation at 10 ⁴⁴ cm ⁴⁴ S rduini, V. Baglin, H. Burkhardt, F. Cerutti, S. C miopoulos, L.S. Esposito, N. Karastathis, R. Lindne
C.Pai D. We	Cb Upgrades and operation at 10 ⁴⁴ cm ⁴⁵ s rduini, V. Baglin, H. Burkhardt, F. Cerutti, S. C miopoulos, L.S. Esposito, N. Karastathis, R. Lindne rkes, D. Pellegrini, S. Redaelli, S. Roesler, F. Sanchez olmann, G. Wikinson
G. A. Efthy C.Pai D. W. CERI	Cb Upgrades and operation at 10 ⁴⁴ cm ⁴³ g rduini, V. Baglin, H. Burkhardt, F. Cerutti, S. O miopoulos, L.S. Esposito, N. Karastathis, R. Lindne rkes, D. Pellegrini, S. Redaelli, S. Roesler, F. Sanchez ollmann, G. Wilkinson N, Geneva, Switzerland

CERN-ACC-NOTE-2018-0038

Ilias.Efthymiopoulos@cern.ch

2018-08-29

luminosity –A first study

udet, B. Di Girolamo, R. De Maria, I. L.E. Medina Medrano, Y. Papaphilippou, alan. P. Schwarz, E. Thomas, A. Tsinganis

ndico.cern.ch/event/400665

- Expression of Interest, LHCC-2017-003
- Physics case, LHCC-2018-027
- Accelerator study, CERN-ACC-2018-038
- Framework TDR, CERN-LHCC-2021-012

Thank you for your attention

2024/04/09