Status of the Ce+BAF project

- **Motivation**
- Timeline
- Expected beam properties
- LERF layout for e+ facility
- **R&D** activities
- Conclusion

Yves R. Roblin and the Ce+BAF working group

Physics Motivation

Jefferson Lab Positron Working Group

Jefferson Lab Users have made a strong case for **positron beams at CEBAF 12 GeV**

 Complementary charge and spin of e⁺ would provide a new probe at Jefferson Lab

2018 – 7 letters of intent to PAC

- 2020 2 conditionally approved PAC proposals
 - Hall B ~ 100 nA polarized (>60%)
 - Hall C ~ 3 μA unpolarized

• 2023 6 new proposals and 5 new letters of intent

See Talk by D. Higinbotham

Proposed Timeline

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 Moller (funded) SoLID (science rev) Positron Source Dev PreProject/Project Dev **Upgrade Phase 1** Transport comm/e+ **Upgrade Phase 2 CEBAF Up**

Gantt chart to give a rough idea when these project could become a reality.

Phase 1 includes building the positron source and the tunnel & beamline connecting the source to main machine. Phase 2 includes the new permanent magnets to allow 22 GeV within current CEBAF footprint.

NOTE: Plan was formulated so that these projects are ramping up as the EIC project cost is ramping down.

Patrizia Rossi, HADRON 2023

12 GeV Ce+BAF e+ versus e-

	Machine Parameter	Electrons	Positrons		
	Hall Multiplicity	4	1 or 2		
	Energy (ABC/D)	11/12 GeV	11/12 GeV		
	Beam Repetition	249.5/499 MHz	249.5/499 MHz		
	Duty Factor	100% cw	100% cw		
	Unpolarized Intensity	170 µA	> 1 µA		
	Polarized Intensity	170 µA	> 50 nA		
	Beam Polarization	> 85%	> 60%		
	Fast/Slow Helicity Reversal	1920 Hz/Yes	1920 Hz/Yes		
		Contraction of the second seco	and the standard and a		

Turning the LERF into a Positron Injector Facility

Machine parameters, several new options

Machine parameter table now more comprehensive

		Г <u> </u>)
Machine Parameter	CEBAF e-	Ce+BAF		
		e+	Degraded e-	e-
Multiplicity	4		1 or 2	
Max. Energy (ABC/D)	11/12 GeV		11/12 GeV	
Beam Repetition	250/499 MHz	250/499 MHz		
Duty Factor	100% cw	100% cw		
Unpolarized Intensity	170 μA**	> 1 µA	>> 1 uA	170 μA**
Polarized Intensity	170 μA**	> 50 nA	>> 1uA	170 μA**
Beam Polarization	> 85%	> 60%	>85% ?	>85%

** Total beam power at Jefferson Lab is limited to 1.1 MW with a max. of 0.9 MW to individual high power dumps.

Exploit electron spin polarization to produce polarized positrons

$$\overrightarrow{e} \rightarrow \overrightarrow{\gamma} \rightarrow \overrightarrow{e}^+ (\overrightarrow{+e})$$

When a longitudinally polarized e⁻ beam strikes matter, e⁺ produced in the shower carrying **>50% of the e⁻ beam energy** are significantly longitudinally **spin polarized**...

...so why not take advantage of this?

E.A. Kuraev, Y.M. Bystritskiy, M. Shatnev, E.Tomasi-Gustafsson, PRC 81 (2010) 055208

LERF Polarized Positron Injector Concept

- High current polarized electron injector (\gtrsim 1 mA @ 10 MeV)
- High current 1-3 mA electron LINAC (two C75 CM)
- Positron conversion target (1 mA @ 120 MeV \Rightarrow 120 kW)
- Positron capture ($\lesssim 100~\mu A @$ ~60 MeV and ~20 MeV)
 - ~1T capture solenoid and nc standing wave cavity with 1497 MHz and \gtrsim 1 MV/m peak field
- e⁺ compression and acceleration to 123 MeV

R&D activities for e- and e+ sources

Concept and Challenges of High-Power Tungsten Target

Target Concept (Side View) Beam axis

- 17 kW deposited by 1 mA @ 120 MeV
- $\sigma_x = \sigma_y = 1.5 \text{ mm}$

Heat by Beam

Some parameters of currently considered high-power e⁺ target:

- ~40 cm target diameter
- 2 Hz rot. frequency
- 8 mm radius of water channel
- 0.3 kg/s water mass flow (1.5 m/s)

Temperature in Rot. Target

A. Ushakov et al, IPAC'23

Cycling Temperature

Target Challenges:

- **High power** deposited by beam → cool and rotate
- Radiation damage → rotate
- Material fatigue cause by cycling temperature
 → study material properties under realistic conditions

A. Ushakov

Distribution of Power Deposed by 1 mA @ 120 MeV e⁻ Beam (FLUKA)

Mechanical design and simulations of temperature, thermal stress, radiation damage and optimization of whole e⁺ capture system have to be done / will be continued

* FLUKA model does not have E-field in cavity

		P	ower [kW]	
Target			18.11	
Compensation Solenoid			0.74	
Coil of Main Solenoid			0.02	
Iron of Main Solenoid			0.06	
W10Cu Absorber inside Main Solenoid			18.88	
TZM Absorber (99.4% Mo, 0.5% Ti, 0.1% Zr)			58.66	
W10Cu Absorber upstream Cavities			12.50	
Solenoid around Cavity			0.12	
Cu Cavities			6.50	
Total Absorbed Power			115.56 (96.3%)	
Ream Power at $z = 275 \text{ cm} \cdot z = 300 \text{ cm} \cdot z = 320 \text{ cm} \cdot z = 320$				
	Photons	Electrons	Positrons	
Viold par primary of	0 1 2 2	0.020	0.005	

<u>Roam Power at 7 – 275 cm r 2 3cm 3 20</u>				
	Photons	Electrons	Positrons	
Yield per primary e-	0.123	0.029	0.005	
Mean Energy [MeV]	12.7	49.6	35.7	
Power [kW]	1.57	1.44	0.19	
Fraction in Total Beam Power	49.1	44.9	6.0	

A. Ushakov

Capture using a high field solenoid in a QWT configuration

A. Ushakov

A free surface GaInSn liquid metal test stand was constructed from 304 SS.

The GaInSn is pumped by a Liquiflo Model H7F Mag-Drive gear pump with speed controlled by a constant-torque VFD.

Example GaInSn jet with speed ~ 8 m/s.

V. Kolstrum

Nozzle for GalnSn target investigated using OpenFOAM.

- (a) The red part shows a
 3 mm × 10 mm jet. The
 nozzle extends from 0
 to 0.015 m.
- (b) Nozzle velocity (blue), for an input velocity of 3 m/s. The output velocity is ~12 m/s. The red curve is the kinematic pressure p/ρ.

V. Kolstrum

Transporting large e+ beam

- Transverse emittance is many times that of CEBAF. Goal is to inject up to 40 mm.mrad (usual e- beam is 1mm.mrad) to the front of NL. This beam also has up to a percent of energy spread.
- Dedicated transport lines with large bore quads and low dispersion optics were designed
- LDRD (Amy Sy) aims at designing, installing and using a degraded e- beam in the existing CEBAF to confirm that one can transport 40mm.mrad.

Recent development: Using a DBA structure

Large bore quadrupoles

• JLAB TN-06-029 (Benesch). Designed to accommodate the 60mm.mrad normalized emittance expected in 22 GeV hall lines

104 mm ID. Can be made 35.56 cm or longer. More than enough field for our needs and eliminate considerations of chromatic effects. 40 to 60 mm.mrad normalized is what we expect in the LERF to CEBAF transport.

Will need custom power supplies but it can be ganged together in the LERF->SL line

Degrader girder location in CEBAF

Moving towards reality: engineering design

Reversing polarity in magnets, how fast can we go?

Reversing polarity of 2100 CEBAF magnets (S. Philip Head DC Power group)

- >1900 (correctors & quads) already bipolar operation
- 39 (recirculation/transport dipoles) will require engineered solution
 - \circ 21 recirculation & dog-leg
 - \circ 12 extraction units
 - 6 end-station transport/dump
- Hall D is only permanent magnet would have to be rotated

Magnetic Field Integrity (M. Tiefenback CEBAF magnet systems integrator)

- Unipolar dipoles would need to be deliberately tested
 - o demonstrate field restores after polarity inversion
 - o quantify possible systematic effects
- Soft iron steel are expected to perform well under polarity reversal
- Two decades of operation suggest remnant fields <20 G tolerable
 - Sudden power supply trips introduce uncontrolled flux
 - o Modifications to power supplies or field maps

Technote JLAB-TN-23-043

3-Year R&D overview – aggressively pursuing FOA's

- Technote JLAB-TN-23-043, magnet polarization reversal
- Sep 24-29, SPIN2023 https://indico.jlab.org/event/663/J. Grames, 'A positron beam at CEBAF"
- J. Grames et al., (poster) "Status of Ce+BAF: Polarized Positron Beam Capability at CEBAF 12 GeV", IPAC2023
- R. Kazimi et al., "Polarized Electron Injector for Positron Capability at CEBAF 12 GeV". IPAC2023
- A. Sy et al., "Degrader beamline design at the CEBAF injector for machine acceptance studies", IPAC2023
- A. Ushakov et al, "Conceptual Design of a High-Power Target for Positron Production at CEBAF", IPAC2023
- A. Ushakov, "Positron target design and fatigue studies", UVA PWG meeting, Charlottesville
- D. Turner,"Delivering e+ beams from LERF through Ce+BAF", UVA PWG meeting, Charlottesville
- S. Habet, "Concept of a polarized positron injector for CEBAF", UVA PWG meeting, Charlottesville
- Y. Roblin, "Positron beam: technical aspects", International workshop on CLAS12 Physics
- C. Hernandez-Garcia, "Building the next high voltage dc photogun polarized source for the ILC at JLab", LCWS2023
- Snowmass 2022 White paper, Positron Sources for Future High Energy Physics Colliders <u>https://arxiv.org/pdf/2204.13245</u>
- A. Accardi et al., "e+@JLab White Paper: An Experimental Program with Positron Beams at Jefferson Lab", <u>https://arxiv.org/abs/2007.15081</u> (2020)

Acknowledgments

I would like to acknowledge the **Ce⁺BAF Working Group**, the **Jefferson Lab Positron Working Group** and all those who have been supportive to this progression of activity.

J. Benesch, A. Bogacz, L. Cardman, J. Conway, S. Covrig, P. Degtiarenko, S. Ghoshal, S. Gopinath, J. Gubeli, S. Habet, C. Hernandez-Garcia, D. Higinbotham, A. Hofler, R. Kazimi, M. Kostin, F. Lin, V. Kolstrum, V. Lizarraga-Rubio, S. Nagaitsev, M. Poelker, N. Raut, B. Rimmer, Y. Roblin, A. Seryi, K. Smolenski, M. Spata, R. Suleiman, A. Sy, D. Turner, A. Ushakov, C. Valerio-Lizaraga, E. Voutier, S. Zhang

Conclusion

- Significant R&D effort ongoing at Jefferson Lab and collaborating institutions
- Feedback and requests from user community for specific e+ capabilities welcome
- For further information, contact Joe Grames (grames@jlab.org)

