

ATLAS ITk-Pixel Detector Overview

Ali Skaf

On behalf of the ITk-Pixel Collaboration

Tuesday, April 9, 2024

ATLAS LHC

- LHC 27km ring at CERN area, with ATLAS, CMS, LHCb, ALICE experiments.
 - Started operation in 2011.
 - To be upgraded to HL-LHC.
- ATLAS-LHC;
 - Largest particle detector ever constructed.
 - 25m x 44m ; 7000 tonnes.
 - 6 different sub-system detectors/trackers (see Oleg's talk).
 - Investigate wide range of physics, from Higgs boson to extra dimensions and particles that could make up dark matter.

Tuesday, April 9, 2024

LHC to HL-LHC

- LHC → High-Luminosity LHC upgrade to generate a total of 3000-4000 fb⁻¹ of data in 10 years, starting in 2029 (~10 times higher integrated luminosity compared to 450 fb⁻¹ by end of Run3).
- In ATLAS: Increase average pile-up from ≈ 60 to up to 200 proton-proton collisions @ 40 MHz (25 ns bunch crossing) ⇒ Higher particle density and radiation damage
 - Track density too high for the current Inner Detector (ID),
 - Current ID nearing its end of life:

⇒ Build new tracking detector, the Inner Tracker (ITk)

Tuesday, April 9, 2024

ATLAS ITk

Tuesday, April 9, 2024

ITk-Pixel Detector Overview – DIS2024 - Ali Skaf

ATLAS ITk Pixel

Upgrade summary..

	Current pixel system	New ITk
Granularity (pixels)	~92 M	~5.1 G
N° of modules	~2000	~9700
Active area (m ²)	~1.9	~13
Pseudo-rapidity η	< 2.5	< 4

Inner System

r [mm]

- L0-L1 layers of flat staves and rings:
 - 2600 modules
 - 2.4 m²
- L0: 3D single modules, radius = 39mm
- L1: n-in-p planar quad modules
- Replaceable @2000 fb⁻¹

Outer Barrel

- L2-L3-L4 layers of flat staves (longerons) and inclined rings
- 4772 n-in-p planar quad modules
- 6.94 m²

Outer End-cap

- L2-L3-L4 layers of rings
- 2344 n-in-p planar quad modules
- 3.64 m²

Sensors and Modules

6/16

Basic principle

- Backside is negative bias and n+ is ground.
- Detect electron-hole pairs created by ionizing energy loss from minimum ionizing particle.
- Pixel detector
 - To ground all pixels, high resistivity biasing grid is necessary (Si-poly resistor)
 - Readout ASIC is connected by "bump bonding".
 - Sensor thickness: Layer 0,1 : 100um Layer 2,3,4 : 150um

Planar sensor

- n-in-p used in L1 (100 um), and L2,3,4 (150 um)
- Quad modules (1 sensor 40 x 40 mm²; 4 FE ASICs 20 x 20 mm²)

Tuesday, April 9, 2024

Sensors and Modules

Quad Module (QM) assembly

- Once the sensor is bump bonded to the FE ASICs, module is glued to a Flexible Printed Circuit (FPC), using a special assembly tool.
- ASICs are then wire bonded to the FCP.

QM Testing

- Design validation (DV) Testing during prototyping and preproduction:
 - Thermal cycling done to stress the bumps.
 - Different electrical tests also performed to verify the QM correct functioning.
 - Testbeam campaigns for um-irradiated and irradiated modules to test module efficiency and track reconstruction.
- Later: Quality control (QC) on each module built during production → make sure to install only good modules.

Sensors and Modules

3D sensors - Single module

- Used in L0.
- Single-side technology: conductive support wafer (Si-Si), both electrodes etched from the same side.
- 150 μm thin active substrate to reduce cluster size and data rates.
- Small pixels (high occupancy + resolution):
 - Rings: 50x50 μm2
 - Flat barrel: 25x100 µm2
- Single module (1 sensor 20 x 20 mm²; 1 FE ASIC 20 x 20 mm²) bump bonded.
- Arranged in triplets for L0 ring and barrel regions.
- Same as QM, wire bonding and testing.
- Testbeam campaigns for um-irradiated and irradiated modules to test module efficiency and track reconstruction.

Tuesday, April 9, 2024

Testbeam Example

0.995

0.99

0.985

0.98

0.975

0.97

0.965

0.96

- **Testbeam** campaign w/ ITkPixV1 umirradiated / irradiated modules (2023).
- Done at CERN SPS north area.
- Pion beam at 120 GeV passes through Mimosa26 telescope.
- Required in-pixel efficiency is 98,5% for un-irradiated and 97% for irradiated planar QMs are met.
- For 3D modules, required in-pixel efficiency is 96%.
 - Near p+ electrode region, it drops to 85% and 70%.
 - Outside it reaches 100%.
 - Average efficiency requirement is met.
 - ITkPixV2 tests planned during 2024

Un-irradiated planar QM

Outer End-Cap Outer Barrel Outer End-Cap Outer End-Cap Outer Barrel Outer End-Cap Outer End-Cap Outer Barrel Outer End-Cap

Half ring prototype - 11 modules in 1 Serial Powering (SP) chain

Tuesday, April 9, 2024

ITk-Pixel Detector Overview - DIS2024 - Ali Skaf

Flat stave (longeror

6/12 modules in 1 SP that

Outer Barrel

Demonstrator

@SR1-CERN

10/16

Half ring schematic 11 modules in 1 SP chain

> Loaded ring prototype L0: 3D modules L1: planar QMs

Pixel Serial Powering

- To provide required power to operate all FE over long wires, several modules (3 to 16) are connected in series and powered by a constant current source.
- Shunt LDO regulators are integrated in FE to generate constant operating voltage
- Module FEs are powered in parallel
- Dedicated DCS chip (MOPS) used for monitoring.

Shunt LDO regulator basic schematic

FE overall current stabilized by shunt LDO (within some limit!)

Tuesday, April 9, 2024

ITk-Pixel Detector Overview - DIS2024 - Ali Skaf

ITk-Pixel DAQ

- **ITkSW**: DAQ software based on YARR (+ DB and storage).
- Networking services (**NetioNext/Felixstar**).
- FELIX: PC-based gateway w/ PCIe FPGA board (FLX-712) and software tools, used in ATLAS and provided/maintained centrally from the TDAQ group
- VLDB+/Optoboard (Optobox): lpGBT(s), VTRX+, GBCR (ASICs developed at CERN)
- Connection cabling (electrical (firefly/Twinax)/optical).
- FEs: RD53A/RD53B(ITkPix-V1)/RD53C(ITkPixV2).

Tuesday, April 9, 2024

Readout FE Chips/QMs

- RD53 collaboration to develop the FE readout chip common for ATLAS and CMS pixel detectors:
 - RD53A: prototype chip with 3 FE analog part flavors: synchronous, linear and differential.
 - RD53B: improved design ITkPix for ATLAS (differential FE, 400×384 pixels), CROC for CMS (linear FE, 432×336 pixels). ITkPixV1 tested and few bugs identified. Link sharing feature implemented.
 - RD53C: ITkPixV2 is the production FE, delivery started and first modules currently under test.

ITkPixV1 digital QM

ITk-Pixel Detector Overview - DIS2024 - Ali Skaf

Readout Chain Testing

- FLX712 setup:
 - Has 24 fiber links
 - Each fiber linked to 1 lpGBT
 - Connected to 6/7 RD53A/B E-links @1.28Gbps
- (Sub-)system test with only ONE FLX712 requires:
 - HW: 24 lpGBTs +168 FEs + connections
 - OR emulators on FPGAs with realistic/verified functionalities

Readout Chain Testing

- Start by using FPGA lpGBT and RD53A ٠ emulators (move to RD53B later)
 - KCU116: 4 SFPs + FMC/4 SFPs => 8 ٠ links (8 lpGBT + 56 RD53A emulator instances)
 - VCU128: 4 QSFP28 => 16 links (16 ٠ IpGBT and 112 RD53A emulator instances)
- System configuration/control require more functional blocs => **SoC design** (Processing system (PS) + peripherals..)
- PS built around Xilinx MicroBlaze soft IP. ٠ with bare metal FW (no need to any RTOS)
- Individual/multiple/all FEs (10 hits/event, with 512000 triggers sent)
 - Lost triggers witnessed (with variable ٠ loss pattern)
 - Work in progress...

Tuesday, April 9, 2024

Endpoint 0 ('*'=aligned, '-'=not aligned) (venv) lab34:~/stress test sw/apps\$./init-board.py vcu128 ../configs/config.lpgbt LNK 0 8 16 24 Initializing board with IP 192.169.1.11 on port 7 Board("vcu128", 192.169.1.11:7, device="") Available frontends: 3. *---*-- *---*-- *---*-- *---**--00: XXXXXXX 4: *---*-- *---*--- *---*--- *---**--01: xxxxxxx 02 · ****** 10: *---*-- *---*-- *---*-- *---* lab34:~/Scripts\$ flx-info link 11: *---*-- *---*-- *---*-- *---* Card type : FLX-712 Endpoint 1 ('*'=aligned, '-'=not aligned) Firmw type: PIXEL LNK 0

Link alignment status

Channel	0	1	2	3	4	5	6	7	8	9	10	11
Aligned	YES											
Channel	12	13	14	15	16	17	18	19	20	21	22	23
Aligned	YES											

Q: *---*-- *---*-- *---*-- *---* 1. *---*-- *---*--- *---*--- *---* 7· *---*-- *---*--- *---*--- *---* 5. *---*-- *---*--- *---*--- *---* 6· *---*--- *---*--- *---*--- *---**---7. *---*--- *---*--- *---*--- *----* 8: *---*-- *---*-- *---*-- *---**--9: *---*-- *---*--- *---*--- *---* 8 16 24 Q: *---*-- *---*-- *---*-- *---**--1. *---*-- *---*--- *---*--- *---**--2: *---*-- *---*--- *---*--- *---* 3. *---*-- *---*-- *---*-- *---**--4: *---*-- *---*-- *---*-- *---* 5: *---*-- *---*-- *---*-- *---**--6: *---*-- *---*--- *---*--- *---* 7: *---*-- *---*--- *---*--- *---**--8: *---*-- *---*-- *---*-- *---**--9: *---*-- *---*--- *---*--- *---* 10: *---*-- *---*--- *---*--- *---* 11. *---*-- *---*--- *---*--- *---*

Conclusions

New ATLAS all-silicon ITk detector is in preparation for the HL-LHC phase-II upgrade:

- Increase granularity, average pile-up, radiation hardness, trigger rate..
- Divided in ITk Pixel and Strip subsystems.
- Use new sensor technology, readout FE chips, other ASICs.
- DAQ readout chain development is undergoing.
- Test setups are being qualified for production.
- ATLAS ITk Pixel collaboration member institutes are about to pass from pre-production into production to have upgraded ITk installed and operational by 2029.
 Thank you!