DIS 2024 - 31st International Workshop on Deep Inelastic Scattering. Grenoble, 8-12 April 2024

Development of the ATLAS liquid Argon Calorimeter Readout Electronics for the HL-LHC

Elena Mazzeo

UNIVERSITÀ **DEGLI STUDI DI MILANO**

On behalf of the ATLAS Liquid Argon Calorimeter Group

The ATLAS Liquid Argon (LAr) Calorimeter

- Sampling calorimeter based on **liquid argon** as **active medium**.
- Measures energy, position and timing of electromagnetic showers (electrons and photons) + jets.

Elena Mazzeo

EM calorimeter (barrel + endcap)

- Lead + LAr
- 173,312 readout channels
- Coverage: $|\eta| <$ 3.2

Hadronic Endcap (HEC)

- Copper + LAr
- 5632 read-out channels
- Coverage: $1.5 < |\eta| < 3.2$

Forward Calorimeter (FCal)

- Copper/Tungsten + LAr
- 3524 read-out channels
- Coverage: $3.1 < |\eta| < 4.9$

182,468 cells!

Read-out electronics samples data at 40 MHz and sends off the detector for analysis and triggering!

The High Luminosity LHC (HL-LHC) phase

- During Run 4, ATLAS is expected to collect 3000
 fb⁻¹ of data (× 20 w.r.t. Run 2 data) during 10
 years of operation.
- Achieved thanks to instantaneous luminosity up to 7 × 10^{34} cm⁻²s⁻¹ = 7 × design luminosity.
- Challenging operation environment!
- ATLAS trigger & data acquisition (TDAQ) system needs to handle simultaneous pp interactions (= pileup <µ>) up to ~200.
- Stronger radiation tolerance for on-detector electronics.
- To survive the extreme conditions of the HL-LHC data-taking, the ATLAS detectors will undergo major upgrades (= Phase 2 upgrade!).

Includes redesigning and replacing the **readout electronics** for the **LAr calorimeters**

Will have to cope with the **increased data-volume** at HL-LHC and tolerate stronger radiation doses, while retaining **excellent performance** for the **measurements** of **incoming electrons, photons, and jets**.

Elena Mazzeo

Outline of the LAr HL-LHC readout

On detector

Off detector

- **Digitized signals** are sent via optical links from the FEB2s to the LAr Signal Processing boards (LASPs).
- LASPs performs **digital filtering** and accurate and fast energy & timing calculations.
- LASPs also send **inputs** to the **trigger** system (= will receive full granularity calorimeter data @ 40 MHz)!
- Second complementary **TDAQ chain** relies on the **Phase 1 trigger**.
- Described in **Émilien's presentation**!

Ondetector electronics

Outline of the Front End Boards (FEB2)

- The Front End Boards (FEB2s) receives signals from calorimeter cells and perform analog processing.
- Signals are **digitized**, **serialized** and **transmitted** off-detector via IpGBT protocol.
- 1524 FEB2s with 128 channels each.

Elena Mazzeo

...to the digitized output to send off-detector!

lpGBT chips for control and timing configuration.

lpGBT chips for data serialization and transmission.

Key results

- First full-size prototype (with all 128 channels populated) is ready, and is currently being tested.
- In particular, tests for **radiation-hard** powering solutions are in progress (see <u>Slide 8</u> for details).
- Next prototype expected in Summer 2024.

Outlook

First large-scale integration test of the **full readout chain** is expected for Summer 2024.

ALFE2 and COLUTA custom ASICs

ALFE2 custom ASIC: Pre-Amplifier/Shaper (PA/S)

- Based on 130 nm CMOS technology, provides **amplification** and **bipolar CR-(RC)**² shaping over two overlapping gain scales (High and Low).
- Each ASIC will handle signals from 4 calorimeter cells, and provide 9 differential inputs to the ADCs (= 4 analog signals \times 2 gains + 1 sum signal for hardware trigger).

- Non-linearity < 0.1% and noise \sim 150 nA (greatly exceeding the 350) nA requirement!) for 10 mA channels.
- Radiation tolerance: performant after 12 kGy doses (X 8 w.r.t the expected dose!).

Exceeding specifications!

COLUTAv4 custom ASIC: Analog to Digital Converter (ADC)

Key results

- Based on 65 nm CMOS technology, **digitizes** PA/S outputs at **40 MHz** on a 14-bit dynamic range with two gains (required to cover the full required 16-bit dynamic range) and > 11-bit resolution.
- It covers 8 channels = 4 analog LAr signals \times 2 gains.
 - Excellent uniformity performance with injection of 2MHz sine wave.
 - Low pedestal noise: RMS of 12 ADC counts.

Elena Mazzeo

- Both ASICs are concluding the preproduction stage, and entering mass production.
- Preparation of setup for **automatic** testing of the full production in advanced stage!

Integration & powering with FEB2 (pre-)prototype

PA/S + ADC performance

- Demonstrated the functionality of the read-out and control for 32 channels.
- for testing the power distribution system.

Tests with injected pulses show an **excellent uniformity in pulse shapes**, as well as extremely low electronic noise.

Elena Mazzeo

Development of the ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

• Slice board with **32 channels** (1 / 4 of FEB2) with same **density** as **final** FEB2.

- Includes 8 preamplifiers / shapers, 8 ADCs, and 8 lpGBT + VTRX+ chips for
- configuring the board and for data serialization and transmission.

• Used for characterizing energy and timing, linearity, and multi-channel performance, and

Power distribution

- Tested various solutions for All runs, High Gain on-board stepping down 48-<u>ल्</u>र 17.5 12-V, no mezzanine (average = 5.1) 48-V. SM with bPOL-48V, BRIC (average = 8.0) **V** power supply to the SM with LMG5200, BRIC (average = 6.3) 0 30 15.0 **⊂** 12.5 voltages needed by the ษ 10.0 **ASICs** with the help of Ö mezzanines. ctio 2.5 Fra - Noise level under control 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0.0 using radiation-soft solutions. Run index - Tests with **CERN-developed radiation-hard** solutions using bPOL48V + bPOL12V are ongoing.

Calibration boards

- The calibration boards inject **known** calorimeter **signals** at the LAr copper electrodes with **16-bit dynamic range** to **calibrate** read-out electronics.
- 128 boards (with 128 channels each) are needed to calibrate 182,468 cells!

CLAROC custom ASIC

- **Creates pulse** by opening high frequency (HF) switch.
- Based on 180 nm HV-CMOS (XFAB) technology. ——> Needed to cover full dynamic range.

LADOC custom ASIC

16-bit **Digital to Analog Converter**, commands HF switch (based on 130 nm TSMC) technology).

- Both ASICs in their current version (CLAROCv4 and LA exceed linearity requirements of a factor between 2
- Further radiation testing of ASICs is ongoing.

Elena Mazzeo

Development of the ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

LADOC / CLAROC test board

ADOCv2) and 10!		Integral non-li requireme
	High gain (low current = 0-5 mA)	0.1%
	Intermediate current range (0-200 mA)	0.2%
	High and very high current range (0-300/320 mA)	1-2%

- Both ASICs entering mass production: LADOCv2b is the final version, now in mass production, while CLAROCv4b is submitted.

Offdetector electronics

LAr timing system (LATS)

_	Comp	leted	test	board	design	and	pre	pared	test

- First full prototype cabled, and passed basic electrical tests.
- Proposed architecture for integration with ATLAS TTC and TDAQ systems.
- First integration tests with FEB2 and Calibration board ongoing.

Outlook

Key

results

- Fabrication of second prototype (LATOURNETT v2) to start in early 2025.
- New integration tests foreseen after the hardware becomes available.
- Software and firmware development ongoing with LATOURNETT v1 and FPGA devkits.

Elena Mazzeo

Development of the ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

 The LAr timing system (LATS) handles Trigger, Timing and Control (TTC) distribution, configuration, and monitoring of the FEB2 and **Calibration** boards, relying on **IpGBT protocol**.

• 30 LATOURNETT ATCA blades.

- Each equipped with **1 central + 12 array** Cyclone 10 GX FPGAs.
- Each controls 72 on-detector boards with two dual links for redundancy. LATOURNETT v1

bench.

11

LAr signal processor (LASP)

The LAr signal processor (LASP) applies digital filtering to waveform from the FEB2, calculates energy and time, and transmits to TDAQ systems.

Considering **ML architectures** to implement in FPGA for **energy reconstruction**.

LASP ATCA board (main blade)

- Receives data from up to 6 FEB2s (= **768 channels**) using IpGBT protocol at 10.24 Gbps.
- Computes energy and time in real time (= for each LHC bunch crossing @ 40 MHz).
- Sends output to the trigger system at 25 Gbps.
- Data is buffered for $\sim 10 \ \mu s$ until a trigger decision is reached.
- Upon a trigger accept, data is sent to the DAQ system.
- Implemented using two Intel Agilex FPGAs per blade.

Smart Rear Transition Module (sRTM)

- Complements LASP main blade.
- Used for data transmission and TTC integration.

- A first set of test boards are produced, and are continuously running in test bench.

- Regular monitoring of temperature, voltage and current in place.
- Validated power, I²C sensors, and FPGA configuration.

Outlook

- Work ongoing on the firmware, aiming to optimize FPGA resource usage and power consumption.
- Prototype for LASP blades and sRTM being finalized (foreseen for June 2024).
- Long series of tests in stand-alone and within the full system are foreseen for this year, to **verify TDR specs**!

Development of the ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

LASP test board

Summary

- data taking conditions at HL-LHC.
- All electronics will be replaced by 2029, and are designed to run throughout the full HL-LHC operation (~ 2041).
- Major **progress** on **LAr Phase 2 upgrade**:

FEB2

- Promising test results on FEB2 preprototype, and new full-size FEB2 prototype ready and now being tested.
- First large-scale integration test of the full readout chain is expected for **Summer 2024**.

Custom ASICs

- Custom ASICs meet / exceed specifications!
- ALFE2, COLUTA, CLAROC and LADOC ASICs now entering mass production.

Calibration board

Fabrication of second version of **full-scale board** in progress.

LATS

Fabrication of new LATS prototype to start in early 2025, then additional stand-alone and system integration tests are foreseen.

LASP

- **Prototype** for LASP blades and sRTM being finalized
- alone and within the full

• On-detector and off-detector electronics for the LAr Calorimeters are being re-designed, to cope with the challenges of

(foreseen for June 2024), and work on firmware ongoing.

- Long series of tests in standsystem to **verify TDR specs**.

On schedule for installation into ATLAS cavern after the end of Run 3!

Thank you for your attention!

Principles of the LAr HL-LHC readout

- **Data is buffered** with a latency of 10 μ s off-detector.
- Upon a trigger accept, the **full precision data stream** is **sent to the DAQ system**.

Elena Mazzeo

Principles of the current LAr readout

- Signals from the calorimeter cells are read out by the Front End Boards (FEB).
- The FEB2s perform **analog processing** of the signals (= preamplification + shaping and splitting in three gain scales).
- Analog signals are summed on the new Layer Sum Boards (LSBs), forming coarser "Super Cells", and sent to the LTDBs.
- Full granularity calorimeter data is buffered on**detector**, waiting for a trigger decision.
- Upon an Level 1 trigger accept (rate = \approx 110 kHz), signals from the optimal gain scale are digitized by a 12-bit ADC, serialized and transmitted off**detector** to the DAQ system.

Each **ROD** receive digitized data from up to 8 FEBs, and calculates energy, timing, and quality of the pulses to send to the DAQ system.

- The LTDBs digitize the Super Cell signals @ 40 MHz, and send the digitized data off-detector to the LDPBs.
- The analog Super Cell signals are also sent to the **Tower Builder** Board (TBB) which performs analog sums for the legacy analog trigger (now being decommissioned).
- The LDPBs convert the digital Super Cell data to energies in real-time and **send inputs** to the Level 1 digital trigger.

