Status and Prospects of Electron-ion collider in China (EicC)

Qinghua Xu (Shandong University)

On behalf of the EicC working groups

The XXXI International Workshop on Deep Inelastic Scattering and Related Subjects (DIS2024)

Grenoble, France, April 8-12, 2024

Lepton Scattering: An Ideal Tool

- Modern "Rutherford Scattering" experiment in understanding internal structure of nucleon
 - > Start from unpolarized fixed targets
 - Extended unpolarized collider experiments
 - Polarized fixed-target experiments for spin structure of nucleon
- Need polarized electron-ion collider for deeper understanding of nucleon spin structure & nuclear structure
 - ▶ High luminosity: $10^2 \sim 10^3 \times \text{HERA}$ lumi.
 - High polarization: both electron and ion beams
 - Large acceptance: nearly full detector coverage
- EIC will be built at Brookhaven National Lab. in ~2032 at Ecm ~ 29 – 141 GeV

[Figure from DESY-21-099]

Electron-ion collider in China (EicC)

- > Energy in c.m.: $15 \sim 20 \text{ GeV}$
- ➢ Electron beam: 3.5 GeV, polarization ~ 80%
- Proton beam: 20 GeV, polarization ~ 70%
- ➤ Luminosity: $\geq 2 \times 10^{33}$ cm⁻² · s⁻¹
- > Other available polarized ion beams: d, ${}^{3}\text{He}^{++}$
- > Available unpolarized ion beams: ${}^{7}Li^{3+}$, ${}^{12}C^{6+}$, ${}^{40}Ca^{20+}$, ${}^{197}Au^{79+}$, ${}^{208}Pb^{82+}$, ${}^{238}U^{92+}$

HIAF in Huizhou (惠州)

High Intensity heavy-ion Accelerator Facility

- A national facility on nuclear physics, atomic physics, heavy-ion applications ...
- > Open to scientists all over the world
- Provide intense beams of primary and radioactive ions
- Beam commissioning is planned in 2025

Electron-ion collider China(EicC)

• EicC White paper: arXiv: <u>2102.09222</u>, Front. Phys.16(6), 64701 (2021)

Frontiers of ISSN 2095-0462 Volume 16 · Number 6 December 2021

1	Exec	cutive su	ummary	4			
	1.1	Physics highlights					
		1.1.1 Partonic structure and three-dimensional landscape of nucleon .					
		1.1.2	Partonic structure of nuclei	9			
	1.1.3 Exotic hadronic states						
	1.2	Polariz	ed electron ion collider in China (EicC)	12			
	1.3	Compl	ementarity of EicC and EIC-US	15			
2	EicC	C physic	s highlights	18			
	2.1	One-di	mensional spin structure of nucleons	18			
	2.2	Three-	dimensional tomography of nucleons	23			
		2.2.1	Transverse momentum dependent parton distributions	24			
		2.2.2	Generalized parton distributions	31			
	2.3	Parton	ic structure of nucleus	36			
		2.3.1	The nuclear quark and gluon distributions	37			
		2.3.2	Hadronization and parton energy loss in nuclear medium \ldots	40			
	2.4	Exotic	hadronic states				
		2.4.1	Status of hidden-charm and hidden-bottom hadron spectrum	43			
		2.4.2	Exotic hadrons at EicC	46			
		2.4.3	Cross section estimates and simulations	51			
	2.5	Other i	r important exploratory studies				
		2.5.1 Proton mass					
		2.5.2	Structure of light pseudoscalar mesons	60			
2.5.3 Intrinsic charm				63			
	2.6	6 QCD theory and phenomenology					
		2.6.1	Synergies	67			
		2.6.2	Lattice QCD	68			
		2.6.3	Continuum theory and phenomenology	72			
3	Acce	elerator	conceptual design	78			
	3.1	Overal	l design and key parameters	78			
	3.2	Accele	rator facilities	82			
		3.2.1	Ion accelerator complex	85			
		3.2.2	Electron accelerator complex	87			

Physics Highlights

• Partonic structure and three-dimensional landscape of the nucleon

Complementarity of EicC and EIC-US

Nucleon spin structure:

EicC is optimized to systematically explore the gluon and sea quarks in moderate *x* regime At a crucial place between JLab and EIC-US

Partonic structure in nuclear environment:

Parton distribution in nuclei at moderate *x* Fast parton/hadron interaction with cold nuclear matter

Exotic hadron states:

Independent confirmation of hidden-charm pentaquarks and search for hidden-bottom analogues Exotic hadron production: final particles in mid-rapidity

Proton mass / quarkonium production:

Systematic investigation of Υ near threshold production Complementary kinematic coverage to EIC-US Combine with J/ ψ production at JLab

Physics Processes

• Inclusive DIS at a large momentum transfer

- dominated by the scattering of the lepton off an active quark/parton
- collinear factorization
- indirectly "see" quarks, gluons and their dynamics

Semi-inclusive DIS

- identify a final state hadron
- explore the emergence of hadrons from colored quarks/gluons
- flavor dependence by selecting different observed hadrons

Exclusive process

- ➢ identify all the final state particles
- explore the exotic hadron states, proton mass

Conceptual Design of the EicC Detector

EicC Impact: Helicity distribution

EicC Impact: Transversity and Collins

• Fit results and EicC impact: transversity distributions

C. Zeng, H. Dong, T. Liu, P. Sun, Y. Zhao, Phys. Rev. D 109 (2024) 056002

EicC Impact: Transversity and Collins

• Fit results and EicC impact: Collins fragmentation functions

C. Zeng, H. Dong, T. Liu, P. Sun, Y. Zhao, Phys. Rev. D 109 (2024) 056002

Qinghua Xu, Shandong University

EicC Impact: Sivers function

• EicC impact: Sivers functions

$$f_{1T}^{\perp(1)}(x) = \pi \int d\mathbf{k}_{\perp}^2 \frac{\mathbf{k}_{\perp}^2}{2M^2} f_{1T}^{\perp}(x, \mathbf{k}_{\perp}^2)$$

C. Zeng, T. Liu, P. Sun, Y. Zhao, Phys. Rev. D 106 (2022) 094039

EicC CDR in preparation

Volume I: Accelerator

Volume II: Physics and Detectors

Contents

1	Overview of EicC				
	1.1	The Science Goals and the Requirements for EicC			
	1.2	EicC Design Concept			
	1.3	Beam Parameters and Luminosity			
	1.4	Ion Accelerator Complex Design			
	1.5	Electron Accelerator Complex Design			
	1.6	Staged Electron Cooling for Ions			
	1.7	The Interaction Region Design			
	1.8	Overview Summary			
	1.0				
2	Bea	m Dynamics Design			
	2.1	EicC Collision Scheme			
	2.2	Luminosity lifetime			
	2.3	Collective Effects and Beam Stabilities			
	2.4	Space Charge Effects			
	2.5	Beam-Beam Effects			
	2.6	Intra-beam Scattering			
	2.0				
3	Ion	Accelerator Complex			
	3.1	Introduction			
	3.2	Formation of EicC Ion Beams			
	3.3	Polarized Ion Source			
	3.4	iLinac			
	3.5	Booster Ring			
	3.6	pRing			
	3.7	Beam Synchronization			
	3.8	Polarization and Polarimetry			
	0.0				
4	Elec	ctron Accelerator Complex			
	4.1	Introduction			
	4.2	Polarized Electron Source			
	4.3	Electron Injector			
	4.4	eRing			
	4.5	Synchrotron Radiation and Beam Parameters			
	4.6	Polarization and Polarimetry			
		-			
5	Elec	ctron Cooling			
	5.1	Introduction			
	5.2	Medium Energy Electron Cooler			
	5.3	ERL Based High Energy Electron Cooler			
	5.4	Novel cooling scheme development			

Contents

 $\mathbf{2}$

1 EicC Physics

1.1	One-dimensional spin structure of nucleons
1.2	Three-dimensional tomography of nucleons
	1.2.1 TMDs
	1.2.2 GPDs
1.3	Nucleon mass
1.4	Partonic structure of nucleus
1.5	Exotic hadronic states
1.6	Structure of light pseudoscalar mesons
\mathbf{Phv}	sics requirements and detector concept
0.1	
2.1	Physics requirements
	2.1.1 Particle multiplicity and event rate
	2.1.2 Scattered electron
	2.1.3 Charged hadron identification
	2.1.4 Small angle detection
2.2	Detector concept

3 Tracking system

IIa	fracking system							
3.1	Vertex detector							
3.2	Time projection chamber							
3.3	All silicon tracker							
	3.3.1 All silicon tracker layout							
	3.3.2 Detector simulation and reconstruction							
	3.3.3 Tracking and vertexing performance							
3.4	Endcap disk							

4 PID system

4.1	Detector consideration
4.2	Time of flight detector
	4.2.1 MRPC
	4.2.2 DIRC-based TOF
4.3	Cherenkov detector
	4.3.1 DIRC
	4.3.2 Module RICH

5 Calorimetry

5.1	Design consideration	
5.2	Shashlik-type EMCal	
	5.2.1 Module design and simulation	
	5.2.2 Energy and spatial resolution	
	5.2.3 Detector layout	
5.3	Crystall EMCal	
5.4	HCal	

- Final version expected by the end of 2024

CDR Working Groups

Physics

Accelerator

1) EicC Accelerators	1) 1D spin	1) Vertexing + tracking	
2) Ion Sources	2) 3D spin (TMDs + GPDs)	2) PID	
3) Ion Machine	3) Exotic states	3) Calorimetry	
5) Electron Machine	4) EHM and proton mass	4) IR + Magnet	
5) Polarization	5) Nuclei	5) Luminosity and polarimetry	
6) Electron cooling	6) LQCD	6) Forward detector	
7) IR	7) DSE	7) DAQ	
8) Common System	8) New ideas	8) Simulations	
		Software: EicCRoot	
EicC CDR Volume I	EicC CDR	Volume II	

Detector

EicC Detector: Physics Requirement

[Figure from EicC White paper]

EicC Detector design- evolving to CDR

Fig. 4.10 Conceptual design of the EicC detector.

[Figure by EicC Detector WG]

I. Vertex and tracking detectors

- Physics requirements for EicC tracking:
 - ≻Assume B ~ 1.5 T
 - Barrel (-1 < η < 1.6):
 - σ(p)/p ~ 1% @ 1GeV;
 - E-endcap (-3 < η < -1):
 - σ(p)/p ~ 2% @ 1GeV;
 - P-endcap (1.6 < η < 3):
 - σ(p)/p ~ 2% @ 1GeV;
- Silicon+MPGD hybrid design
- Silicon tracking detector concept
 - Reduced Material budget is ~0.26%
 - Optimal Pixel size: 10 to 20 mircon
 - Thickness: 50 micron

[Figure by EicC Detector WG]

the vertex and inner tracker

2. PID detectors

- PID design concept:
 - Barrel region: DIRC+TOF
 - Backward e-Endcap: mRICH
 - Forward ion-Endcap: dRICH

- PID momentum coverage:
 - ➤ <6 GeV/c at Barrel</p>
 - <4 GeV/c at e-Endcap;</p>
 - <15 GeV/c at ion-Endcap ;</p>

3. Calorimeter system

- General EMCal requirement:
- > E-endcap: energy resolution, $2.5\%/\sqrt{E}$
- > Barrel: good angle resolution, $5.0\%/\sqrt{E}$
- > Ion-endcap: angle resolution, $5.0\%/\sqrt{E}$

• General design of EMCal:

	EMC	type	z/r[m]	Length[cm], X ₀	Coverage[cm]	pseudorapidit y	Tower size
	e-endcap	CsI/crystal	Z=-1.5	30, 16X ₀	15.0 <r<128< th=""><th>(-3.0, -1.0)</th><th>4.0*4.0(front)</th></r<128<>	(-3.0, -1.0)	4.0*4.0(front)
EicC	barrel	Shashlik	R=0.9	45, 16X ₀	-105.8 <z<187.5< th=""><th>(-1.0, 1.5)</th><th>4.0*4.0</th></z<187.5<>	(-1.0, 1.5)	4.0*4.0
	lon-endcap	Shashlik	Z=2.4	45, 16X ₀	24.0 <r<113< th=""><th>(1.5, 3.0)</th><th>(front)</th></r<113<>	(1.5, 3.0)	(front)

4. Far Forward Detectors

• General design concept for far forward detectors EDT+FDT:

EicC @HIAF Timeline

Summary

- EicC, has been proposed to be constructed based on HIAF in Huizhou, Guangdong, China, to advance the nuclear and particle physics.
- Physics highlights of EicC with a large acceptance detector:
 - Precision measurements of nucleon spin structures in the sea quark region, including 3D tomography of nucleon;
 - The partonic structure of nuclei and the parton interaction with the nuclear environment;
 - The exotic states, proton mass etc.
- The EicC physics program complements the scientific programs at JLab and the future EIC project in the US.
- The EicC CDR preparation is underway, expected to be released by the end of 2024.

Summary

- EicC, has been proposed to be constructed based on HIAF in Huizhou, Guangdong, China, to advance the nuclear and particle physics.
- Physics highlights of EicC with a large acceptance detector:
 - Precision measurements of nucleon spin structures in the sea quark region, including 3D tomography of nucleon;
 - The partonic structure of nuclei and the parton interaction with the nuclear environment;
 - The exotic states, proton mass etc.
- The EicC physics program complements the scientific programs at JLab and the future EIC project in the US.
- The EicC CDR preparation is underway, expected to be released by the end of 2024.

Thank you!

Many thanks to Tianbo Liu, Yuxiang Zhao and all EicC working group members!