Overview of ALICE Upgrades R. Guernane (LPSC Grenoble CNRS/IN2P3–UGA) for the ALICE Collaboration DIS2024 Apr 8–12, 2024 Grenoble, France

ALICE Upgrade Roadmap

- ALICE designed to study the microscopic dynamics of the strongly-interacting matter produced in heavy-ion collisions at the LHC
 - Variety of detector systems for measuring hadrons, leptons and photons
- To exploit the full potential of the LHC luminosity increase
 - Major upgrade during LHC LS2 \rightarrow **ALICE 2**

Outline

FoCal Detector

- The Forward Calorimeter is a highly granular Si+W electromagnetic calorimeter combined with a conventional sampling hadronic calorimeter
 - Covering forward rapidities $3.2 < \eta < 5.8$
 - Located outside the ALICE solenoid magnet at a distance of 7 m from the ALICE nominal interaction point
 - Measurements of inclusive production cross sections and correlations of neutral mesons, prompt photons, and jets at high rapidities
 - Explore the unknown dynamics of the quarks and gluons inside a nucleus at small momentum fraction *x* down to 10⁻⁶
- FoCal-E is a compact Si+W sampling electromagnetic calorimeter with longitudinal segmentation
 - 18 layers of W and Si pads with a granularity of 1 cm²
 - Provide the measurement of the **shower energy** and **profile**
 - **2 layers** of W and Si pixels with high granularity of $30 \times 30 \ \mu m^2$
 - Enable two-photon separation down to a few mm, to discriminate between isolated photons and merged showers of decay photon pairs from neutral pions
- FoCal-H is a Cu-scintillating fiber spaghetti calorimeter with high granularity of about 2 × 2 cm²
 - Provides good hadronic energy resolution and compensation
 - Contributes to the measurement of **photon isolation energy**, to improve the selection of prompt photons, and to jet measurements

Aluminum (14.3%)

- Reduce the **material thickness** of the ITS2 inner layers
 - The silicon sensor contributes to **only 1/7**th of the total material budget!
 - Remove the electrical substrate, mechanical support, and active **cooling** circuit in the detector acceptance
- Bring the first detection layer **closer to the interaction point**
 - **New beam pipe** with a central section of smaller inner radius (18.2 mm \rightarrow 16 mm) but still well within the LHC aperture requirements

ITS3 Detector

- Replace the 3 innermost layers of ITS2 with new ultra-light, truly cylindrical layers made of wafer-scale 65 nm MAPS
 - 300 mm wafer-scale MAPS sensors, fabricated using stitching
 - Bent to the target radii (Layer 0 from 23 mm to 19 mm)
 - Mechanically held in place by carbon foam ribs
 - Air cooling between the layers
 - Low material budget (0.05 % of X_0)
- Broad interest on ALICE ITS3 developments from other experiments!
 - ITS3 R&D will pave the way for an **ultimate vertex detector concept** \rightarrow ALICE 3

- Improvement by a **factor 2** on DCA resolution at all p_{T} 's
 - Clear **separation** of the secondary from primary interaction vertex
- Significant improvement of **tracking efficiency** for $p_T < 200 \text{ MeV}/c$
- New fundamental observables into reach
 - Charmed and beauty baryons
 - Low-mass di-electrons
 - Multi-flavor particles via decays to strange baryons
 - Full topological reconstruction of B_s
 - c-deuterons...

6

ALICE 3: a Next-generation Heavy-ion Experiment at the LHC

- Address fundamental questions which will remain open at the end of LHC Run 4 because of limitations in detector performance or available luminosity
 - Underlying dynamics of chiral symmetry restoration
 - Partonic equation of state and its temperature dep
 - QGP properties driving its constituents to equilibrat
 - Hadronization mechanisms of the QGP
- ALICE 3 planning
 - 2023-25: Selection of technologies, small-scale proof of concept prototypes
 - Scoping document in preparation
 - **2026-27:** Large-scale engineered prototypes
 - Technical Design Reports
 - 2028-31: Construction and testing
 To achieve all this, the next leap is needed in detector performance and statistics

 - **2033-34:** Preparation of cavern and installation → next-generation heavy-ion experiment! ←

ō∕b

c/b

ALICE 3: Detector Concept

- Novel detector concept based on innovative technologies relevant for future HEP experiments
 - Large acceptance $|\eta| < 4$
 - Compact and ultra-low-mass all-silicon tracker with excellent pointing resolution
 - Retractable vertex detector
 - Extensive particle identification
 - Silicon-based TOF (target resolution < 20 ps), aerogel ring-imaging Čerenkov, ECal, and muon ID detectors
 - Housed in a magnetic field provided by a **superconducting magnet** system up with B = 2 T
 - Forward conversion tracker to reconstruct photons at very low momentum from their conversions to electron-positron pairs
 - Continuous readout and online processing
- R&D started on many fronts!

ALICE 3: Tracking Performance

- To achieve the ultimate **pointing resolution** $\propto r_0 \cdot \sqrt{x/X_0}$
 - The first hits must be detected as close as possible to the interaction point (5 mm)
 - Essential to enable the so-called *strangeness tracking* – the direct detection of strange baryons before they decay – to improve the **pointing resolution** and **suppress combinatorial background** $\propto r_0 \cdot \sqrt{x/X_0}$
 - Measurement of multi-charm baryon decays
 - The amount of material in front of it must be kept to a minimum
- A dedicated/futuristic vertex detector that will have to be **retractable** to provide the required aperture for the LHC at injection energy
- Many challenges
 - Power consumption, radiation hardness, timing,
 - integration, mass production, etc

5x better than ALICE 2.1 (ITS3 + TPC) \rightarrow e.g. S/B ~10x for D⁰

ALICE 3: Tracking System

ALICE 3: IRIS Concept of Vertexer

- In order to achieve the required pointing resolution of ALICE3
 - The first hit must be measured as close as possible to the interaction point
 - As little material as possible in front of the first layer to reduce multiple scattering
- The requirements on the pointing resolution are met by a vertex detector with
 - Inner radius of 5 mm
 - ~ 0.1 % of X_0 of radiation length for the first layer
 - Position resolution of $\sim 2.5 \,\mu m$
- Based on the ITS3 R&D on wafer-size bent MAPS

ALICE 3: PID with TOF & RICH

0.8

0.6

- Dedicated PID system made of TOF
 - Separation power $\propto L/\sigma_{\text{TOF}}$
 - Time resolution of 20 ps
 - Inner (R = 20 cm, 1 × 1 mm²) and outer (R = 85 cm , 5 × 5 mm²) layers, and forward disks at ± 4.05 m
 - Low material budget 1–3 % of X_0
 - FDMAPS and LGAD sensor options
- Complemented by a RICH detector which extends charged PID in the high-p_T range beyond the TOF limits
 - Achieved using
 aerogel radiator with
 n = 1.03

10-1

ALICE 3 study

Layout v1, bTOF1 |n| < 1.44, B = 2T

Pb–Pb, $\sqrt{s_{NN}} = 5.52$ TeV, Pythia8 Angantyr

p (GeV/c)

ALICE 3: Muon and photon ID

- Muon chambers at central rapidity
 - ~ 70 cm iron hadron absorber
 - 2 layers made of plastic scintillator bars equipped with wave-length shifting fibers coupled to SiPMs readout
 - Option with RPCs or MWPC
 - Required granularity of ~ 5×5 cm² pad size Optimized for reconstruction **down to zero** p_{T}
- Large acceptance ECal (2π (\pm
 - Sampling calorimeter (à la EN 2/2 ...
 layers (1 mm Pb + 1.5 mm pla ...
 - PbWO₄-based high energy re
 Critical for measuring P-wave q
 radiation via real photons

Summary

- ALICE has ar
 - LS3 (2026-:
 - FoCal: γ, π' gluon nPDF
 - ITS3: truly (wafer-size |
 - Low-ma
 - Improve exotic cl
 - **Beyond Ru** programme
 - Proposal of massless" t

- Expected integrated luminosity @ 650 kHz inelastic interaction rate (~14/pb ~1.1e12 collisions)
- =1GeV (μm) • Calibrations needed for full event reconstruction (pass 1)
- During YETS most of EPNs available for reconstruction
 - ٩ pass 1 reconstruction on EPN farm (CPU + GPU) take ှင်
 - 2 months to tune and validate selections on pass 1 A to 0
 - Skim CTFs with total ~10⁻³ rejection factor before the ∄ 0
- 2022 pp data will be removed once skimmed with event على 2022 pp data will be removed once skimmed with event
- In addition, plan to keep ~10% of the same as MB (~1/pb

Luciano Musa (CERN) | CERN RRB | 26 October 2022

- Multi-charm and beauty particles
- Low-mass di-electrons and soft photons
- Now preparing scoping document for discussions with CERN committees and funding agencies

FoCal Performance

- Unique kinematic reach corresponding to the FoCal acceptance as compared to current and future experiments at the LHC and other facilities
- Impact of FoCal on the gluon nPDF
 - Strong constraints over a large *x* region: $\sim 10^{-5}$ - 10^{-2}
 - Substantially outperform the expected performance of EIC for $x < 10^{-3}$

ALICE 3: Tracking System Key Features

Component	Observables	η <	1.75 (ba	irrel)		1.75 < η < 4 (forward)				rd)	Detectors	
Vertexing	Multi-charm baryons, dielectrons	Best possible DCA resolution, $\sigma_{DCA} \approx 10 \ \mu m$ at 200 MeV/c				Best possible DCA resolution, $\sigma_{DCA} \approx 30 \ \mu m$ at 200 MeV/c				ution, //c	Retractable silicon pixel tracker: $\sigma_{pos} \approx 2.5 \ \mu m, R_{in} \approx 5 \ mm,$ X/X ₀ $\approx 0.1 \ \%$ for first layer	
Tracking	Multi-charm baryons, dielectrons	σ _{pT} / p _T -				~1-2 %					Silicon pixel tracker: $\sigma_{pos} \approx 10 \ \mu m, R_{out} \approx 80 \ cm, ALIC$ X/X ₀ $\approx 1 \ \% \ / layer$	
		Ver	ex Det	ector	Middl	e Lay	ers	Outer	Trac	ker	ITS3	ITS2
Pixel size (µm ²)		÷ 9	O(10	x 10)	• 2.8	<i>O</i> (50	x 50)	• 2.8	O(50	x 50)	O(20 x 20)	O(30 x 30)
Position resolution (µm)			÷ 2	2.5		• 2	10		• 2	2 10	5	5
Time resolution (ns RMS)			÷ 10	100		÷ 10	100		÷ 10	100	100* / O(1000)	O(1000)
Shaping time (ns RMS)			÷ 25	200		÷ 25	200		÷ 25	200	200* / O(5000)	O(5000)
Fake-hit rate (/ pixel / event)			~	< 10 ⁻⁸		~	< 10 ⁻⁸		≈	< 10 ⁻⁸	<10-7	<< 10 ⁻⁶
Power consumption (mW / cm ²)			+ 75%	70			20	_		20	20**	47 / 35***
Particle hit density (MHz / cm ²)			• 20	94			1.7	6	7%	0.06	8.5	5
Non-Ionising Energy Loss (1 MeV n _{eq} / cm ²)		1 / cm²) • 3	000 1	x 10 ¹⁶	• 10	0 2)	<mark>k 10</mark> 14	≈	5.6	x 10 ¹²	3 x 10 ¹²	3 x 10 ¹²
Total Ionising Dose (Mrad)			• 1000	300		• 1	0 5	~		0.2	0.3	0.3
Surface (m ²)			• 2.5	0.15		÷	2 5		• 6	57	0.06	10
Material budget (% X ₀)				0.1			1			1	0.05	0.36 / 1.1 ***

* goal, not crucial, like not possible due to power budget

** Pixel matrix

*** Innermost layers / outer layers