Energy-Frontier DIS at CERN: Programme Options & Detector Challenges

Paul Newman (Birmingham)

IIII

with Yuji Yamazaki (Kobe) and the LHeC/FCC-eh working group

XXXI International Workshop on Deep Inelastic Scattering 8-12 April 2024, Grenoble, France

Machine Overview

LHeC (>50 GeV electron beams) $E_{cms} = 0.2 - 1.3 \text{ TeV}$, (Q²,x) range far beyond HERA run ep/pp together with the HL-LHC (\geq Run5)

- Power consumption constraint (< 150 MW) and need for high lumi imply energy recovery for electrons

- With 20 MV/m acceleration, 5.4km racetrack matches to 50 GeV leptons (1/5 of LHC circumference).

• LHeC ep lumi \rightarrow 10³⁴ cm⁻² s⁻¹ $(\sim 100 \text{ fb}^{-1} \text{ per year, } \sim 1 \text{ ab}^{-1} \text{ total})$

FCC-eh (60 GeV electron beams) E_{cms} = 3.5 TeV, described in CDR of the FCC run ep/pp together: FCC-hh + FCC-eh

Energy Recovery Linacs

- Sustainability will be a key consideration for any future accelerator:
- → Superconducting RF cryomodules
- \rightarrow Energy Recovery linacs

PERLE @ IJCLab

o international collaboration

- all ERL aspects to demonstrate readiness
 design, build and operation this decade
- \circ design, build and operation this decade \circ for e⁺e⁻ and ep/eA HEP collider applications

With timely capital investments, PERLE will demonstrate high-power ERL this decade

PERLE is critical path towards LHeC technical realisation
See also bERLinPRO

Innovate for Sustainable Accelerator Systems: Kick-off meeting next week: 4 https://indico.ijclab.in2p3.fr/event/10302/

Structure of CERN-mandated study towards Next European Strategy (Material input: March 2025!)

The ep/eA study at the LHC and FCC – new impactful goals for the community

LHeC Physics Targets and Detector Implications

See DIS'24 talks from Nestor Armesto, Mandy Cooper-Sarkar Bruce Mellado

Standalone Higgs, Top, EW, BSM programme → General purpose particle physics detector → Good performance for all high p_T particles → Heavy Flavour tagging

Precision proton PDFs, including very low x parton dynamics in ep,eA → Dedicated DIS exp't → Hermeticity → Hadronic final state resolution for kinematics → Flavour tagging / PID → Beamline instruments

Detector Challenges: Hermiticity

νννν γ **(Q**²)

(t)

(W)

 J/Ψ

0

200

400

600

800

/ 1000

1200 W / GeV

- Access to Q²=1 GeV² for all x requires scattered electrons to 179°

- Higgs production dominated by forward jet configurations

- High W exclusive J/Ψ requires lepton reconstruction up to 179°

Inner Detector Challenges: Synchrotron

- Dipole magnets bend electrons to head-on collisions with protons
- Synchrotron mitigated with elliptical beampipe, collimators and absorption on the Q0 (normal conducting) quadrupole
- New initiative to extend studies of synchrotron load in interaction region (L. Forthomme) to the tracker / bemline detectors

Detetor Input Material and Connections

CERN-ACC-Note-2020-0002 Geneva, July 28, 2020

The Large Hadron-Electron Collider at the HL-LHC

LHeC and FCC-he Study Group

What we have already:

- 10 dedicated workshops over 15 years
- Original LHeC CDR (2012)
- Updated CDR (2020) \rightarrow integrating (HL-)LHC ideas

Where we can learn / improve now:

- Connections to new / ongoing European DRD R&D collaborations
- Connections to more specific future colliders (FCC, ILC, CLIC...)
- Connections to Electron Ion Collider

Detector Overview (as in 2020 CDR Update)

Compact 13m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)

<u>Hermetic</u>

- Beamline also well instrumented

<u>Modular</u>

'Could be built now', but many open questions:

- A snapshot in time, borrowing heavily from (HL)-LHC (particularly ATLAS)
- Possibly over-specified (eg for radiation hardness)?
- Possibly lacking important components for ep/eA (eg. Particle ID)
- Not particularly well integrated or optimised

10

- HV-CMOS MAPS technology is low material and cost-effective \rightarrow ~20% of a radiation length up to η ~4.5

Bent / stitched
wafers for inner layers
(as ALICE and ePIC)
→ High performance in
p_T and vertex
resolutions

Central Tracker in CDR-Update

- Semi-elliptical inner layers (synchrotron)

Pitch (µm)	rφ	Z
pixel	25	50
macro pixel	100	400
strip	100	10-50mm

r≈84 Central FHC-BHC-**Fwd Tracker** Bwd Plug Plug Tracker Tracker 186 154 53 **EMC-Barrel** Solenoid **BEC-Plug FEC-Plug** 23 23

- Finely segmented plugs (W, Pb, Cu) for compact showering, with Si sensors

LAr

Sci-Fe

Si-W

Si-Pb

 η coverage

 $-2.3 < \eta < 2.8$

 $2.8 < \eta < 5.5$

 $-2.3 < \eta < -4.8$

(~ behind EM barrel)

- 25-50 X_0 and ~10 λ throughout acceptance region

Baseline configuration

EM+Had very forward

EM+Had very backward

Had barrel+Ecap

EM barrel + small η endcap

Beamline Instrumentation in CDR Update

Outgoing electron direction:

Photoproduction
e-taggers 14-62m and
Photon detector at around 120m for lumi
(Bethe-Heitler ep→epγ)

Outgoing proton direction:

- Space for ± 30 cm Si-W ZDC at 110m ... could have highly segmented design similar to ALICE FoCAL

- Roman pot-based proton spectrometer at ~200m (as per ATLAS/CMS)
- → fractional proton energy-loss $\xi \sim 0.1$
- Also at ~120m (new $\rightarrow \xi \sim 0.2$)
- Lowest x with 'FP420'-type insertion to cold region of beampipe at 420m?

Modifications for 50TeV protons: FCC-eh

Current (limited!) design is scaled-up version of LHeC detector

Required calo depth scales logathmically
... overall dimensions
20x7m retains 12-15
interaction lengths

- Longer tracker (~9m) to retain 1° acceptance ... tilted wheels? 14

Mapping to new European **DRD** programme

(From ECFA European R&D roadmap)

e.g. Solid State **Devices**

- 3			Par Par	7 5 5 2	\$; & J u	2 2 x
		DRDT	< 2030	2030-035	2035- 2040 2040-2049	>20/
	Position precision	3.1,3.4	• • •			
Vertex detector ²⁾	Low X/Xo	3.1,3.4		ă ă i ă i		ŏŏŏ
	Low power	3.1,3.4	T 🙆 🙆 🖉	ě i i ě i		ĎŎŎ
	High rates	3.1,3.4				
	Large area wafers ³⁾	3.1,3.4	• • • • •			
	Ultrafast timing4)	3.2		T 😐 🖕 🖬 (
	Radiation tolerance NIEL	3.3				
	Radiation tolerance TID	3.3		• •		
Tracker ⁵⁾	Position precision	3.1,3.4				
	Low X/Xo	3.1,3.4		ŏŏ ŏ		
	Low power	3.1,3.4		ŏŏ ŏ		
	High rates	3.1,3.4		- - (
	Large area wafers ³⁾	3.1,3.4				
	Ultrafast timing4)	3.2				
	Radiation tolerance NIEL	3.3		•		
	Radiation tolerance TID	3.3				
	Position precision	3.1,3.4				
	Low X/Xo	3.1,3.4				
	Low power	3.1,3.4		• •		
	High rates	3.1,3.4				
Calorimeter ⁶⁾	Large area wafers ³⁾	3.1,3.4		•		
	Ultrafast timing4)	3.2				Ď ŏ Ŏ
	Radiation tolerance NIEL	3.3				
	Radiation tolerance TID	3.3				
	Position precision	3.1,3.4				•
	Low X/Xo	3.1,3.4				
Time of flight ⁷⁾	Low power	3.1,3.4				
	High rates	3.1,3.4				
	Large area wafers ³⁾	3.1,3.4			•	
	Ultrafast timing4)	3.2	•	• • • •		
	Radiation tolerance NIEL	3.3		•		
	Radiation tolerance TID	3.3		•		
					1	5

EIC Developments to Consider

Some Open Topics

... including both consolidation and 'from scratch' addition of new capabilities

Design / simulation code base development

- Common framework to investigate (integrated) detector response

Detailed synchrotron radiation simulations

- Explore impact on inner regions more thoroughly

Optimising technology and layout of detectors near beamline

- Inner tracker technology / layout (Fluences? Sensor placement close to the beam)
- Forward / Backward instrumentation fully integrated with the IR design

Adding Particle ID capabilities (Cerenkov, TOF)

- (p_T / η) ranges / technologies to connect with EIC SIDIS and physics in AA
- Compromises with respect to other detector components?

Developing a Trigger / DAQ scheme

- Understanding the physics and background rates

- Obtaining a (triggered or streaming) concept for data acquisition

Reviewing aspects of the detector 'inherited' from ATLAS?

- Are calorimeter and muon designs really ideal for use in ep / eA? <u>LHeC versus FCC-eh</u>

- Implications of higher energies ... 'same again only bigger', or smarter?

A joint detector eh and hh detector?

- Technical challenges in simultaneously serving e-h and h-h studies

- Opportuities for cross-calibration and systematics reduction

SUMMARY

"Circles in a circle" Wassily Kandinsky (1923) Philadelphia Museum of Art

- LHeC / FCC-eh presents fresh instrumentation challenges
 - 'Technically possible' LHeC design exists from CDR-update
- Extension to FCC-eh yet to be studied in detail
- Many opportunities for new innovation and connections ...
 - Synergies with EIC detectors that approach reality
 - New technologies in European DRD programme & developments towards future energy frontier colliders

Timescales for realisation may be long but the next European Strategy starts NOW

Self-subscribe to the WG mailing list: ep-eA-WG4-structure@cern.ch