Overview of the Phase 2 upgrade of CMS detector

We are living in the dark

- What causes particles to possess their specific masses?
- Is it possible that multiple types of Higgs bosons exist?
- What is the reason for the existence of three particle generations?
- Through what mechanism do neutrinos acquire mass?
- Is there a particular scale at which the four fundamental forces merge?
- Does gravity hold a unique status among the fundamental forces?
- Why is there CP violation?
- What has happened to all the antimatter that should exist in the universe?
- Does dark matter truly permeate the universe?
- Is dark energy a component of the cosmic landscape?

High Luminosity LHC (A Torch)

LHC and injectors will undergo significant upgrades to boost beam intensity.

- Instantaneous luminosity (L_{inst}) 5-7x10³⁴ cm⁻² s⁻¹
- $\int \mathcal{L} dt = 3 \text{ ab}^{-1}$ is the ultimate integrated luminosity goal.

Opportunities at High Luminosity LHC (HL-LHC)

• Standard Model:

• Precise measurements and Constraints within the Standard Model.

• Higgs Physics:

- Detailed analysis of the properties of the Higgs boson.
- Search for new phenomena in the Higgs sector.

• BSM Searches:

- Supersymmetry
- Long-lived particles
- Dark Matter
- Heavy Resonances

• Flavor:

- CKM metrology and QCD spectroscopy
- Rare decays → Flavor anomalies

• Heavy lons:

- Precision study of material properties of QCD media.
- Study HI-like behavior in small systems (pp and pA).

3 Billion top/exp

Higgs Factory: 150 Million Higgs and 120k HH

Novel approaches, better detectors: stringent tests of BSM scenarios

Low-P_T/high-P_T complementarity

Precise differential measurements

Challenges at High Luminosity LHC

Expect unprecedented amount of radiation

- doses of up to 1 Grad
- fluences up to $2 \times 10^{16} n_{eq}/cm^2$
- Rate up to **3 GHz/cm²**

High Pile-up

- Luminosity levelling with up to 200 pp interactions per bunch crossing every 25 ns (40 MHz) 3-4 times current LHC Runs.
- Vertex and track reconstruction algorithms less discriminating.
- Existing trigger and readout bandwidth constraints imply tighter selection requirements to increase purity at the cost of signal acceptance.

Challenges at High Luminosity LHC

Accelerated aging:

- Materials used in detectors must be capable of enduring ten times higher levels of dose and fluence.
- It is necessary to **preserve the optical transparency** of scintillators.
- There's a need to control leakage current and charge trapping in silicon detectors, as well as the dark count rate in silicon photomultipliers.
- Management of **single event upsets** in front-end ASICs is crucial.

Detector design and technology requirements

HL-LHC conditions require significant upgrades of the detectors.

- Radiation hardness. Silicon based detectors. Cooling around -30° C.
- Mitigate physics impact of high pileup. ~30 ps MIP timing resolution.
- Higher geometrical coverage.
- Higher resolution and granularity to reduce occupancy.
- More information (*e.g.*, precision timing)
- Higher data rate, better use of the bandwidth

CMS detector upgrade in a nutshell

Upgraded Trigger and Data Acquisition system:

- Tracking in L1 at 40 MHz. Output rate 750 kHz.
- Latency 12.5 μs, longer pipelines.
- High Level Trigger output 7.5 kHz

NEW

Inner Tracker, coverage up to $|\eta| = 3.8$, reduced material

Challenge: cold operation \rightarrow bi-phase CO₂ cooling at -35° C

International Workshop on Deep Inelastic Scattering, Grenoble 2024, Arnab Purohit

https://cds.cern.ch/record/2272264

Tracker Upgrade I

- The entire silicon tracking system, presently consisting of pixel and strip detectors, will be replaced.
- The new tracker will feature
 - increased forward acceptance ($|\eta| < 4$)
 - increased radiation hardness (fluences up to 2.3 × 10¹⁶
 n_{eq}/cm² in pixel layer 1)
 - higher granularity (occupancy < 1% in all tracker regions)
 - compatibility with higher data rates and a longer trigger latency.
- In addition, the tracker will provide tracking information to the L1 trigger, information presently only available at the HLT.

3.5

0.6

Tracker Upgrade II (Inner Tracker)

Increased granularity keeping occupancy at the per-mil level

Innermost layer: 3 GHz/cm²

- → new 65-nm technology ASIC (RD53) enabling $25 \times 100 \,\mu\text{m}^2$ pixels
- \rightarrow 3900 Modules, 4.9 m² pixel area

Sensors

- **3D** in TBPX L1, **planar** elsewhere
- good radiation hardness, power consumption, cooling efficiency
- 150 µm active thickness

Mechanical structure designed for easy installation and removal

→ possibility to replace damaged parts (New)

TEPX Luminosity triggers (dedicated trigger stream, 75 kHz) **TEPX-D4-R1High-precision Luminosity triggers** for real-time cluster counting (dedicated board with FPGA, 825 kHz)

HDI

Sensor + Readout Chip

Cooling Interface

Tracker Upgrade III (Outer Tracker)

рт	mod	lule	con	cept
----	-----	------	-----	------

- **Exploit** bending of charged particle tracks in CMS' **4T B-field**.
- **Correlate hits** from 2 closely spaced sensors to form "**stubs**" compatible with a track $p_T > 2$ GeV.
- **Tuneable offset and window** for homogeneous p_T threshold throughout the Outer Tracker.

Tracker input to the L1 trigger

- Stub information is sent out at BX frequency of 40 MHz.
- Full data read-out at ~750 kHz

OT endcap dees

Module type and variant		TBPS	TB2S	TEDD	Total per variant	Total per type	
25	1.8 mm	0	4464	2792	7256	7680	
25	4.0 mm	0	0	424	424	7000	
PS	1.6 mm	826	0	0	826		
	2.6 mm	1462	0	0	1462	5616	
	4.0 mm	584	0	2744	3328		
Total		2872	4464	5960	13296		

https://cds.cern.ch/record/2667167

~ 2x10¹⁴ n

rs: LYSO crystals + SiPM

10

Vtx/track z (cm)

5

 \mathbf{CMS}

MIP Timing Detector (MTD) I

- Thin layers between tracker and calorimeters
- **MIP sensitivity with 30ps** time resolution at HL-LHC start (< 60ps at 3000 fb⁻¹) Hermetic coverage for $|\eta|$ <3.0

Barrel - BTL

- Surface ~40m²
- Number of channels ~332k
- Radiation levels ~2*10¹⁴ n_{eq}/cm²
- Sensors: LYSO crystals+SiPMs

Endcap - ETL

- Surface ~15m²
- Number of channels ~8.5 Million
- Radiation levels $^{2*10^{15}} n_{eq}/cm^2$
- Sensors: LGAD (Low gain avalanche diodes)

-10

-5

LYSO = Lutetium-Yttrium Oxyorthosilicate SiPM = Silicon Photomultiplier MIP = Minimum Ionising Particle LGAD = Low Gain Avalanche Diode

International Workshop on Deep Inelastic Scattering, Grenoble

-0.2

-15

2024, Arnab Purohit

MIP Timing Detector (MTD) II

The MTD uses well-established technologies

• Barrel:

- LYSO crystals coupled to SiPM.
- Time resolution better than 70 ps till end of life.

• Endcap:

- Planar silicon devices with internal gain, Ultra Fast Silicon Detectors (UFSD).
- LGAD time resolution better than 50 ps at end of life with 600V bias.

tor Ultra Fast Silicon Detector E field

full-size LGAD sensor (8.5 M channels)

International Workshop on Deep Inelastic Scattering, Grenoble

International Workshop on Deep Inelastic Scattering, Grenoble 2024, Arnab Purohit

• 21 layers

Hadronic (CE-H)

steel absorbers

• 9.5 λ (including CE-E)

• High-radiation regions: Si sensors

• Low-radiation regions: scintillation tiles with SiPM readout

High Granularity Calorimeter (HGCal) I

New endcap calorimeter of CMS, Adapts CALICE developments:

- Need to replace ECAL crystals and HCAL scintillators as they were designed for 500 fb⁻¹
- Need to improve jet energy resolution
- Maximize granularity to fully exploit CMS Particle Flow reconstruction
 - fine lateral granularity
 - two-shower separation + narrow jets observation
 - minimize pileup contribution to energy measurements
 - fine longitudinal granularity
 - electromagnetic energy resolution (e.g. for $H \rightarrow \gamma \gamma$)
 - pattern recognition
 - discrimination against pileup
 - Fully utilise timing (real novelty in calorimetry!)
 - Use information at trigger level

Electromagnetic (CE-E)

- Cu/CuW/Pb absorbers
- Si sensors, hexagonal modules
- 26 layers
- \bullet 25.5 Xo and 1.7 λ

CMS

https://cds.cern.ch/record/2293646

High Granularity Calorimeter (HGCal) II

- The Iterative Clustering (TICL) is a modular framework integrated and under development in CMS software.
- Main purpose: processing calo 5-D rechits (x, y, z, t, E) and returning particle properties and probabilities.
- In a nutshell: grouping 2-D Layer Clusters into 3-D clusters (Tracksters) iteratively to reconstruct different particle species using different seeding inputs

International Workshop on Deep Inelastic Scattering, Grenoble 2024, Arnab Purohit

Muon System Upgrade I

- Current muon detectors are expected to withstand HL-LHC radiation levels.
- **Upgrading/replacing the electronics** of the existing DTs, CSCs and RPCs to ensure longevity and improve trigger performance.
- Drift Tubes barrel chambers: 40 MHz readout with improved z/tprecision
- **RPC Resistive Plate Chambers:** readout with improved t-precision
- **CSC Cathode Strip Chambers:** readout with higher bandwidth and latency in ME234/1 using current ME1 and replace ME1 with higher radiation tolerance components
- New stations:
 - 2-layer GEM stations: GE1/1, GE2/1,
 - iRPC: **RE3/1, RE4/1**, 1.6 ≤ η ≤ 2.4
 - 6 Layer GEM station: **ME0 extended coverage** $1.15 \le \eta \le 2.8$

https://cds.cern.ch/record/2283189

The Phase-2 Upgrade of the CMS Muon Detectors TECHNICAL DESIGN REPORT

MEO

International Workshop on Deep Inelastic Scattering, Grenoble 2024, Arnab Purohit

Muon System Upgrade II

2 GEM/CSC "tandems"

- Measurement of "local" μ direction (sensitive to p_T)
- Standalone L1-trigger rate drops by factor up to 10
- Important for off-pointing muon triggers (search for LLPs)

L1 Muon trigger efficiency for the prompt muon trigger (left) and displaced muon trigger algorithm (right), as a function of a true muon p_T in the region 2.1 < $|\eta|$ < 2.4. The L1 trigger p_T threshold is 15 GeV (left) and 10 GeV (right).

Trigger Upgrade

- Increase trigger acceptance and physics sensitivity while maintaining Run 2 thresholds.
- Key features:
 - Increased bandwidth: 100 kHz → 750 kHz
 - Increased latency: 3.8 μ s \rightarrow 12.5 μ s
 - Tracker information (*p*₇ > 2 GeV)
 - Higher granularity in calorimeters and muon system
 - Particle flow layers: FPGA-based algorithms using PF and ML
 - **40 MHz Scouting HL-LHC data:** storing only high-level information.

ohit

Phase-2 trigger project

https://cds.cern.ch/record/2759072 https://cds.cern.ch/record/2714892

Trigger Upgrade

- "Phase 2" HLT resource needs
 - Optimistically ... × 30

• Key features:

• Reconstruct pixel-based tracks and vertices on the GPU

builder units

- Leverage existing support for threads and on-demand reconstruction
- Minimise data transfer

Filter units

remote accelerator units

Heterogeneous HLT Farm

Status of the Upgrade

• All projects (except BRIL & ETL) will be in full production in 2024

Calendar Year	2020	2021	2022	2023	2024	2025	2026	20	27	2028	3
Long Shutdowns	LS2 & Covid extension	n						LS	3		
										Chinging Instal	llation
Tracker Outer	ototyping	Pre-production - Production - Integration Float						Commission	ning		
Tracker Inner	Engineering - Prototyping			EDR	Pre-production - Production - Integration				Float Ship, Inst, Comm.		
Barrel Calorimeters ECAL/HCAL	Engineering - Prototyping		EDR	Pre-production	- Production		Float	Instal	ation - Com	nissioning	
Calorimeter Endcap	Engineering - Prototyping		Pre-production - Production - Integration - Commission		ration - Commissi	sioning Float Ins			tallation - Commissioning		
		•									
Muons CSC	E Installation B design			ODMB/BE pre-production	GODMB/BE pre-production - Production		Float			Installation -	
DT	EDR	Pre-production	Production	o <mark>n Float</mark>			Installation - Commissio			ning	
RPC	ing	Pre-productio	n <mark>5</mark>	Production	Float Inst.						
		Pre-production	Pre-production		on	Float Ins		nstallation - Commissioning			
GEM2	Pre-production	Produ	ction								
GEM0				Pre-production - Production Float			Float	Installation - Commissioning			
MIP-Timing Detector		Engineering - Prototyping		Pre-prod Pro	oduction - Integration in	TST Float	l	Integration, Con	nmissioning		
Endcap	Engineering - Prototyping					Pre-Production - Production			Float II	nst - Com	
L1-Trigger	TDR	Pre-production		S	Production & Integration testing		n <mark>g Float Insta</mark>		Installat	llation - Commissioning	
DAQ/HLT		Pre-pro - Dem	o. V2	Electronics production -	Slice	Float	Installation - Commissioning			ng	
BRIL Luminosity				EDR	Production & Integra	ation		Float			
- FBCM	and prototyping	Engin	EDR	Production & Integration			Float				
- Neutron Mon. + Safety						🚦 Product	ion & Integration		Flo	oat	

Higgs Physics at HL-LHC

International Workshop on Deep Inelastic Scattering, Grenoble 2024, Arnab Purohit

Conclusions

- The HL-LHC will measure the Higgs couplings and details of electroweak symmetry breaking not currently accessible.
- In response to the unprecedented challenges of HL-LHC experimental conditions (level of radiation, pileup, data rate) CMS is breaking new grounds in detector technology
 - tracking information and particle flow algorithms at L1 Trigger
 - high-granularity calorimeter in the forward regions
 - precision timing for tracks, photons and jets
 - extended acceptance for muons
 - unprecedented data bandwidth

"... these [CMS upgrade] projects are unprecedented in scale in particle physics, shift various paradigms, and employ technologies that have never before been exercised by the field" (a quote from external CMS upgrade review)

Backup

L1-Trigger

https://cds.cern.ch/record/2714892

- Tracks in L1-Trigger at 40 MHz
- Particle Flow selection
- 750 kHz L1 output
- 40 MHz data scouting

CMS Data Acquisitior and High Level Trigge

DAQ & High-Level Trigger

https://cds.cern.ch/record/2759072

- Full optical readout
- Heterogenous architecture
- 60 TB/s event network
- 7.5 kHz HLT output

Barrel Calorimeters

https://cds.cern.ch/record/2283187

- ECAL crystal granularity readout at 40 MHz with precise timing for e/y at 30 GeV
- ECAL and HCAL new Back-End boards

Calorimeter Endcap

https://cds.cern.ch/record/2293646

- 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS

Muon systems

https://cds.cern.ch/record/2283189

- DT & CSC new FE/BE readout
- RPC back-end electronics
- New GEM/RPC 1.6 < η < 2.4
- Extended coverage to n ~ 3

TECHNICAL DESIGN REPO

Tracker CMS

https://cds.cern.ch/record/2272264

- Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to $\eta \simeq 3.8$

MIP Timing Detector

https://cds.cern.ch/record/2667167 Precision timing with:

- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

Beam Radiation Instr. and Luminosity http://cds.cern.ch/record/2759074

- Beam abort & timing
- Beam-induced background
- Bunch-by-bunch luminosity: 1% offline, 2% online
- Neutron and mixed-field radiation monitors

International Workshop on Deep Inelastic Scattering, Grenoble 2024, Arnab Purohit

24

https://cds.cern.ch/record/2272264

International Workshop on Deep Inelastic Scattering, Grenoble 2024, Arnab Purohit

(_7 /

CMS

MIP Timing Detector (MTD) I

BTL: L(Y)SO bars + SiPM readout:

- TK/ ECAL interface ~ 45 mm thick
- |η|<1.45 and p_T>0.7 GeV
- Active area ~38 m²; 332k channels
- Fluence at 3 ab⁻¹: 2x10¹⁴ n_{eq}/cm²

International Workshop on Deep Inelastic Scattering, Grenoble

https://cds.cern.ch/record/2283187

Barrel Calorimeter

Faster FE

All samples sent **off-detector** thanks to lossless compression

- trigger primitive generation and trigger decision processed in FPGAs
- trigger information at single crystal level
- lifts 3.8 µs latency bottleneck

