

Upgraded LUCID and Zero Degree Calorimeter Detectors for ATLAS at the High Luminosity LHC

On behalf of the ATLAS collaboration

LUCID and ZDC at LHC

LUCID and ZDC are two ATLAS sub-systems with completely different goals and technologies

The LUCID-2 detector in ALTAS

Luminosity measurement in pp colliders

- The LHC collide protons bunches every 25 ns.
- Luminosity is measured by counting the average number of pp collisions per bunch crossing (μ).
- Typical value at LHC: $\mu = 60$.
- **Hit-counting method (LUCID)**: count the fraction of bunch crossings with hits in the photomultipliers (PMTs).
- Tracking algorithm (Inner Tracker): complementary method counting the number of reconstructed tracks.
- PMT gain is kept constant by **monitoring the response to a radioactive source** (²⁰⁷Bi) deposited on the PMT.
- The intensity of the source is such that ²⁰⁷Bi signals do not interfere with the luminosity measurement.

Going from LHC to HL-LHC

LUCID-3 strategy for HL-LHC

Decrease acceptance and radiation damages by installing smaller PMTs (-30% acceptance) at a larger radial distance from the beampipe (-30% particle flux)

The Hamamatsu R1635 PMT has been produced with a flat quartz window (radiation-hard).

LUCID goal

Measure luminosity with the same accuracy (1%) despite the larger pileup ($\mu = 60 \rightarrow 140$) and the larger integrated luminosity (300 \rightarrow 4000 fb⁻¹)

LUCID-2 will not work at the HL-LHC since it will have hits in every bunch crossing (hit-saturation) and potentially larger radiation damage effects.

The LUCID-3 prototype in the Muon Shielding

*Non-linearities are corrected with Track-Counting algorithms.

 μ_{Tracking}

The LUCID-3 prototype behind the Muon Shielding

LUCID-3 JN prototypes have been installed in the shadow of the Muon Shielding.

Run-3 experience: significantly smaller nonlinearities due to the smaller acceptance.

Good long-term stability of LUCID-3 prototypes (R1635 readout will be modified to further improve its long-term stability)

The LUCID-3 fiber prototype

Two bundles of **radiation hard quartz fibers** around the beampipe, acting as Cherenkov radiator (**charge counting algoritm**)

- **PMTs are located in low radiation area** (²⁰⁷Bi gain monitoring system).
- One bundle equipped with a **CLEARTRAN UV filter** (ϕ = 12 mm, d = 5 mm) to reduce the impact of radiation damage effects (mostly in the UV range).

Fiber degradation is monitored through the ratio between **prompt** and **delayed** LED signals

Ceramoptec OPTRAN[®] UV200/240A, 400um jacket, NA=0.22 F-doped fused silica, acrylate jacket

Ongoing Run-3 data-analysis

The ZDC upgrade for HL-LHC

- Electromagnetic section (EM)
- Reaction Plane detector (RPD)
- Hadronic section (HAD)
- Detector patch panel design minimizes dose to workers during installation.

Physics with ZDC

Measure the number of forward neutrons in heavy ion collisions to distinguish between different classes of physics processes.

- " "0n0n": no neutrons on either side ($\gamma\gamma$ processes).
- "OnXn": neutrons only on one side (photo-nuclear processes).
- "XnXn": neutrons on both sides (hadronic processes).

ZDC has a key role for **trigger** and **offline selection** of **Ultra Peripheral Pb-Pb Collisions** (UPC).

RPD estimates the **reaction plane angle** by measuring correlated deflections of spectator neutrons (2D mapping of the shower after the electromagnetic module).

The HL-ZDC project

Joint project between ATLAS and CMS (proposal submitted in July 2022).

The Target Absorber for Neutral (TAN) hosting the ZDC has been redesigned for HL-LHC (TAXN). Common design ATLAS-CMS.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 25, 053001 (2022)

- New detector design due to **narrower slot** in the TAXN (10 cm \rightarrow 5 cm).
- Higher radiation levels compared to Run-3 (4.5 Mgy full physics program).
- **Radiation hard** and **stable detector** with a good energy resolution.
- Limit exposure of workers (easy cable connection and remote handling).

Remote handling setup

Radiation hardness of the ZDC rods

Results of the Run-2 irradiation campaign done in collaboration with the BRAN luminosity detector of LHC

Transmittance Vs Dose* in the UV region

*The dose delivered to the rods was estimated using Monte Carlo simulations performed by the CERN FLUKA team.

https://doi.org/10.1016/j.nima.2023.168523

Rods inserted in the BRAN detector

- Rod 3a: No relevant losses in the irradiation range expected on the ZDC in Run 3 (1.4 MGy).
- Run-3 irradiation campaign will extend the irradiation range of 1 order of magnitude.

Run-3 experience

ZDC operation in Run-3 will provide relevant input for the HL-ZDC upgrade

- Performance of the new fused silica core rods (Spectrosil 2000, High OH, High H₂).
- Effect of the **improved polishing** on the surface facing the PMT (x5 transmission).
- Performance of the **ZDC-LUCROD readout board** (adapted from the LUCID-LUCROD): waveform sampling at 320 MHz and digital trigger based on lookup tables (3 bits).
- Performance of the **air core cables** transmitting signals over 220 m.

1n peak

Digital Trigger performance

A new LUCROD board is being designed for HL-LHC (in collaboration between LUCID and ZDC groups).

Unpolished Rod

Polished Rod

Run-3 experience with the RPD

- Signal from 8 layers of **staggered fibers of 4 different lengths** collected by 16 PMTs.
- **Rad-hard fused silica fibers** (polymicro, $\phi = 710 \mu m$) as Cherenkov radiator and readout fibers.

The RPD was successfully operated in ATLAS during the 2023 heavy ion run. Ongoing development of Machine Learning algorithms to reconstruct the reaction plane angle.

THANKS for your attention

Backup slides

A.Sbrizzi - DIS 2024

The LUCID ²⁰⁷Bi monitoring system

- During high-luminosity operation (large number of colliding bunches at μ = 60), the PMT gain decreases due to a combination of radiation damages and large anodic currents.
- At each LHC interfill, phtomultipliers are calibrated and the high-voltage is adjusted to compensate for gain losses.
- Calibration signals are provided by a ²⁰⁷Bi source deposited on the PMT window (providing internal conversion electrons).

LUCID-3: the Hamamatsu R1635 PMT signal

- The narrow pulses produced by **R1635** PMTs are not optimal in terms of long-term stability of the **luminosity measurement with hit-counting**.
- The HV adjustments required to keep the gain stable during a year produce a variation of the electron transit-time in the dynode chain affecting the timing of the signal.

Timing shifts smaller than the signal sampling (3.125 ns) can introduce systematic effects in the signal amplitude determination, affecting the luminosity measurement with hit-counting.

LUCID-3: improved long-term stability

- In order to mitigate the effect of transit-time variations, we have installed an analog filter along the read-out of a R1635 detector located in the proximity of the beampipe where the radiation effects are larger compared to LUCID-3 (MOD-R1635).
- The effect of the filter was to **increase the width of R1635 signals** to make them similar to R670 signals (that are not affected by amplitude measurements issues).

Long-term stability improves significantly by increasing the width of R1635 signals.

LUCID-3 fiber degradation

- Fibers irradiated with γ 's at ENEA with total dose corresponding to 3 years of Run-3.
- Large losses observed in UV range.