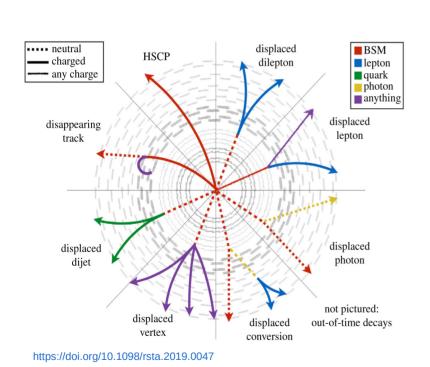


Long-lived particle searches with the ILD experiment

XXXI International Workshop on Deep Inelastic Scattering 8-12 April 2024, Grenoble, France

Jan Klamka, A. F. Żarnecki University of Warsaw



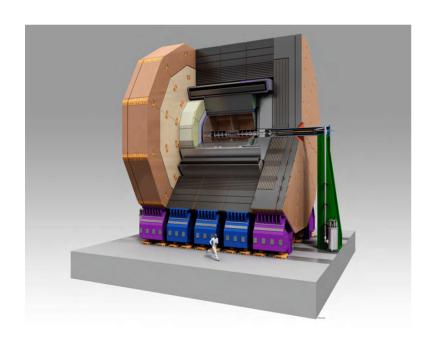
Long-lived particles (LLPs)

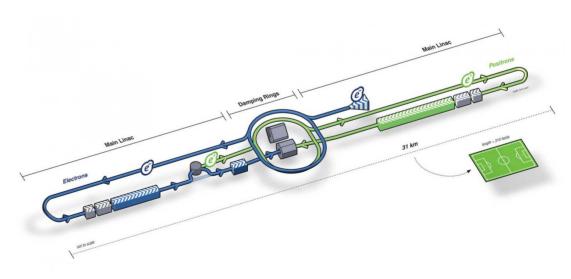
Numerous BSM models predict particles with macroscopic lifetimes:

SUSY particles, axion-like particles, heavy neutral leptons, dark photons, exotic scalars, etc.

		Small coupling	Small phase space	Scale suppression
SUSY	GMSB			√
	AMSB		✓	
	Split-SUSY			✓
	RPV	✓		
NN	Twin Higgs	✓		
	Quirky Little Higgs	✓		
	Folded SUSY		✓	
DM	Freeze-in	✓		
	Asymmetric			✓
	Co-annihilation		✓	
Portals	Singlet Scalars	✓		
	ALPs			✓
	Dark Photons	✓		
	Heavy Neutrinos			✓

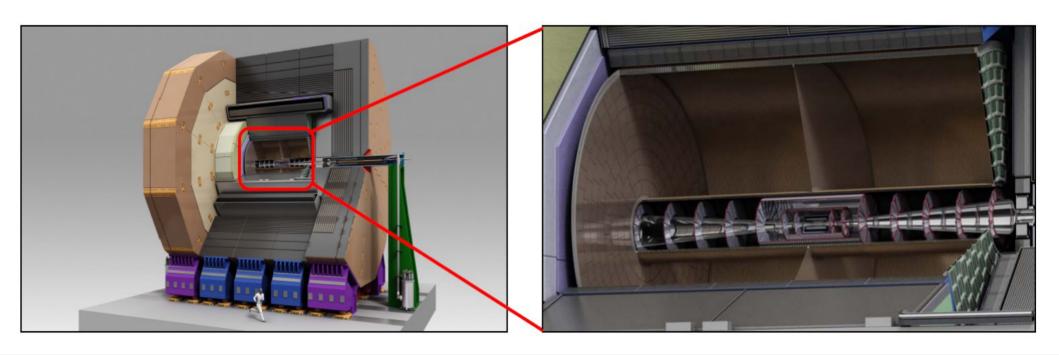
1810.12602


→ their typical properties make it challenging for hadron colliders...



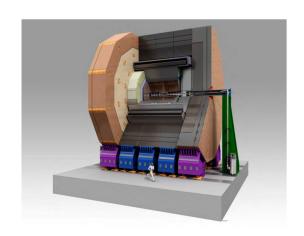
International Large Detector (ILD)

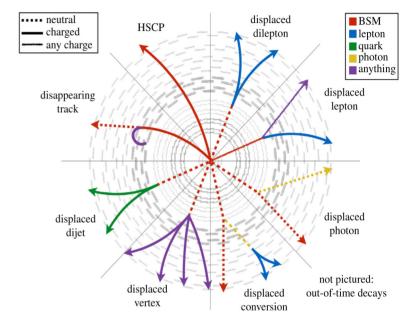
- Originally proposed for the International Linear Collider (ILC)
- Multi-purpose detector for an e⁺e⁻ Higgs factory
- Possible operation at other HF proposals now under study



International Large Detector (ILD)

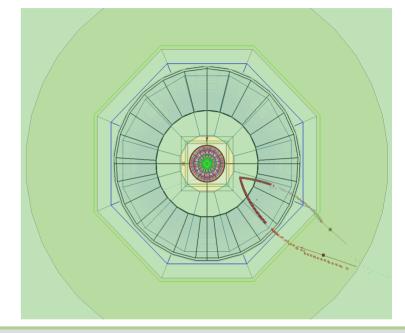
- Nearly 4π angular coverage, optimised for particle flow
- Time projection chamber (TPC) as the main tracker allows for continuous tracking and dE/dx PID
- High granularity calorimeter with minimal material in front of it inside 3.5 T solenoid

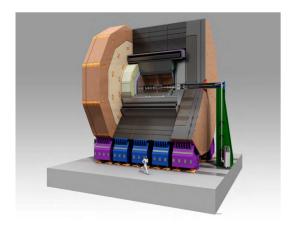




LLPs at the Higgs factories

- Multiple LLP searches at the LHC, sensitive to high masses and couplings
 - → complementary region could be probed at e⁺e⁻ colliders (small masses, couplings, mass splittings)
 - → typical properties of feebly interacting massive particles (FIMPs)
- ILD potentially promising with a <u>TPC</u> as the main tracker (almost continous tracking)

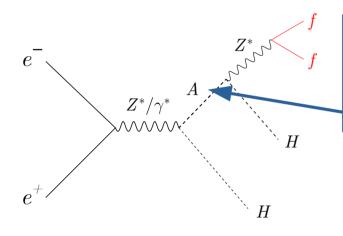




LLPs at the Higgs factories

- Multiple LLP searches at the LHC, sensitive to high masses and couplings
 - → complementary region could be probed at e⁺e⁻ colliders (small masses, couplings, mass splittings)
 - → typical properties of feebly interacting massive particles (FIMPs)
- ILD potentially promising with a <u>TPC</u> as the main tracker (almost continous tracking)

- Study such challenging signatures from the **experimental perspective**
 - → experimental/kinematic properties, not points in a model parameter space
- Focus on a generic case two tracks from a displaced vertex
- No other assumptions about the final state, approach as general as possible

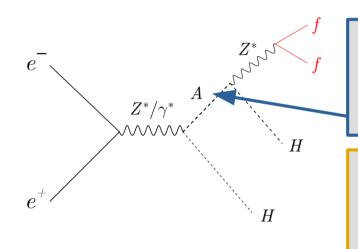


Framework and signatures

As a challenging case (small boost, low-pT final state) we considered:

ightarrow heavy scalar LLP (A) and DM (H) pair-production with small mass splitting, $Z^*
ightarrow \mu \mu$

Long-lived, with
$$c au=1\,\mathrm{m}$$
 $m_A=75\,\mathrm{GeV}$ $m_A-m_H=1,2,3,5\,\mathrm{GeV}$



Framework and signatures


As a challenging case (small boost, low-pT final state) we considered:

ightarrow heavy scalar LLP (A) and DM (H) pair-production with small mass splitting, $Z^*
ightarrow \mu \mu$

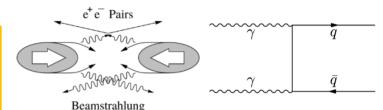
Long-lived, with $c au=1\,\mathrm{m}$ $m_A=75\,\mathrm{GeV}$ $m_A-m_H=1,2,3,5\,\mathrm{GeV}$

Long-lived, $c\tau = 10 \cdot m_a \, [\text{mm}]$ $m_a = 0.3, \, 1, \, 3, \, 10 \, \text{GeV}$

The opposite extreme case, (large boost, high-pT final state)

ightarrow light pseudoscalar LLP $a
ightarrow \mu \mu$

Very simple vertex finding (inside the TPC) based on a distance between track pairs



Overlay events background

At linear e⁺e⁻ colliders beams are strongly focused and radiate photons, so $\gamma\gamma$ interactions also occur in detector. On average, in each bunch-crossing (BXs) at ILC, produced are:

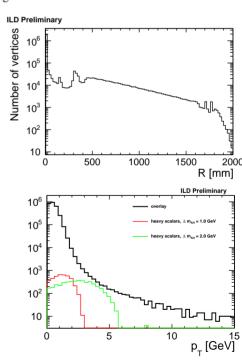
- 1.55 γγ → low-p_T hadrons events
- O(10⁵) incoherent e⁺e⁻ pairs, only a small fraction enters detector

These events are soft, usually important because they **overlay** on physical events

...but can also look like signal on their own

Overlay events background

At linear e^+e^- colliders beams are strongly focused and radiate photons, so $\gamma\gamma$ interactions also occur in detector. On average, in each bunch-crossing (BXs) at ILC, produced are: e⁺e⁻ Pairs


- 1.55 γγ → low-p_T hadrons events
- O(10⁵) incoherent e⁺e⁻ pairs, only a small fraction enters detector

- Marker Beamstrahlung

These events are soft, usually important because they **overlay** on physical events

...but can also look like signal on their own

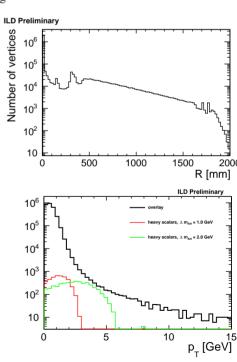
- $\sim 10^{11}$ BXs per year at ILC \rightarrow overwhelming number of overlay events
- Similar kinematics to the signal considered and can be busy
 - \rightarrow many secondary vertices (mostly fake, also V⁰s and photon conversions)
 - → significant background

Overlay events background

At linear e^+e^- colliders beams are strongly focused and radiate photons, so $\gamma\gamma$ interactions also occur in detector. On average, in each bunch-crossing (BXs) at ILC, produced are: e⁺e⁻ Pairs

- 1.55 γγ → low-p_T hadrons events
- O(10⁵) incoherent e⁺e⁻ pairs, only a small fraction enters detector

What we Beamstrahlung


These events are soft, usually important because they **overlay** on physical events

...but can also look like signal on their own

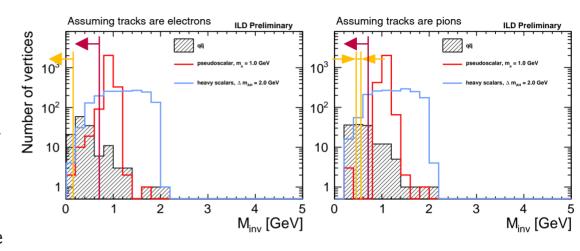
- $\sim 10^{11}$ BXs per year at ILC \rightarrow overwhelming number of overlay events
- Similar kinematics to the signal considered and can be busy
 - \rightarrow many secondary vertices (mostly fake, also V⁰s and photon conversions)
 - → significant background

- Can be suppressed using cuts on the p_{τ} and geometry of track pair
- Total expected reduction factor at the level of ~10⁻¹⁰

Background from physics events

The following survive overlay selection in the hard e⁺e⁻ processes:

- Displaced decays of kaons, lambdas, photons
- Secondary tracks from interactions with detector material

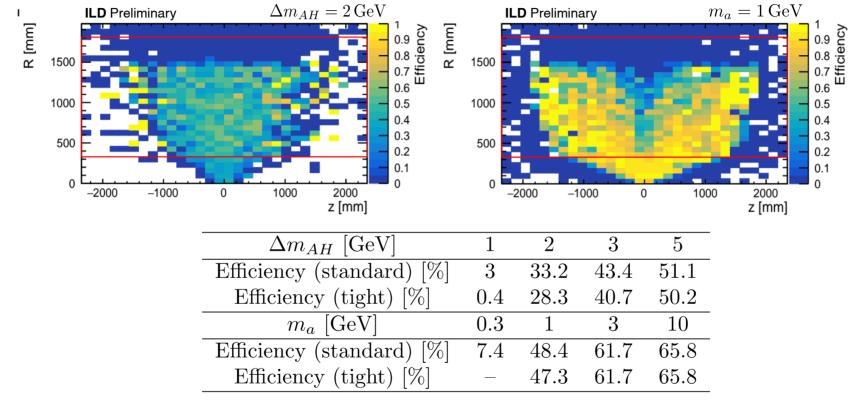

They occur mainly inside jets, so we consider (hard) e^+e^- and $\gamma\gamma$ processes with jets in final state

Additional cuts on invariant mass are applied, with two working points: **standard** and **tight** (tight involving also **isolation** criterium)

Selection eff. depends on number of jets, so:

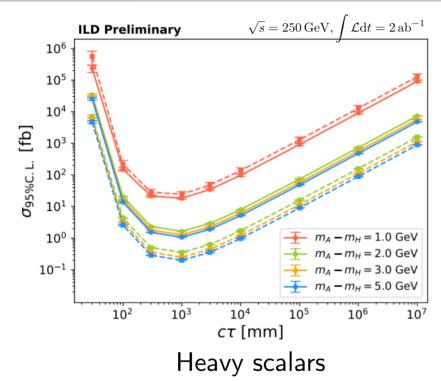
Estimate selection efficiency based on full simulation

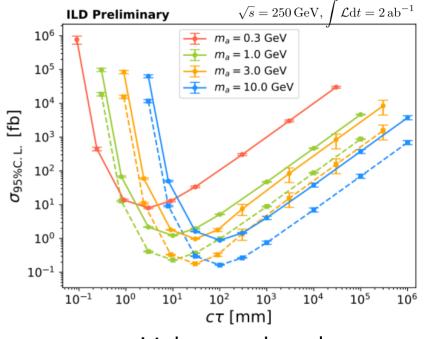
Use qq efficiency for the remaining processes



	$\operatorname{sgn}(P(e^-), P(e^+))$	(-,+)	(+,-)	(-,-)	(+, +)	
	channel	σ [fb]				
	qq	127,966	70,417	0	0	
	qqqq	$28,\!660$	970	0	0	
_	$q q \ell \nu$	29,043	261	191	191	
	$ZZ \to qq\ell\ell, qq\nu\nu$	838	467	0	0	
	$Z\nu_e\nu_e \to qq\nu_e\nu_e$	454	131	0	0	
_	$\mathrm{Zee} \to \mathrm{qqee}$	1,423	1,219	1,156	1,157	
- \	process	BB	$_{ m BW}$	WB	WW	
	$(\text{hard } \gamma^{B/W} \gamma^{B/W})$	42,150	90,338	90,120	71,506	
_						

Vertex finding results

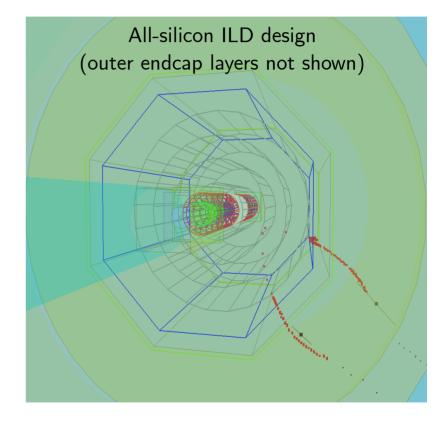



- Efficiency = (correct / decays within TPC acceptance), "correct" if distance to the true vtx < 30 mm
- Signal selection depends strongly on the mass splitting (Z^* virtuality) and mass of a (final state boost)
- A dedicated approach could enhance sensitivity for $\Delta m_{AH} = 1$ GeV and $m_a = 300$ MeV scenarios

Cross section limits

Light pseudoscalar

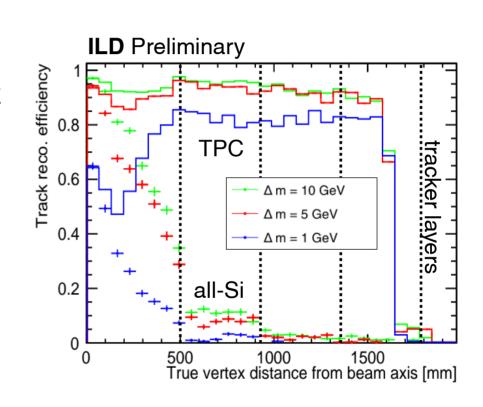
- Tight selection: dashed line, standard selection: solid line
- Tight cuts reject $m_a=300$ MeV scenario and worsens limit for $\Delta m_{AH}=1$ GeV, but for the rest of scenarios provides significant improvement



Alternative all-silicon ILD design

Alternative ILD design implemented for tests

- TPC replaced by the silicon Outer Tracker, modified from the CLICdet
- One barrel layer added and endcap layers spacing increased w.r.t. CLICdet
- Conformal tracking algorithm (designed for CLICdet) used for reconstruction at all-silicon ILD


→ Check how the **results** for <u>heavy scalars</u> are influenced by a **change of tracker** design

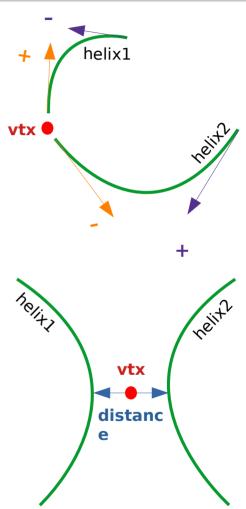
Heavy scalars at all-silicon ILD

- Vertex reconstruction driven by track reconstruction efficiency
- Performance similar to baseline design (TPC) near the beam axis
- Smaller number of hits available → efficiency drops faster with vertex displacement
- At least 4 hits required for track reconstruction
 → limited reach
- For large decay lengths, efficiency significantly higher for "standard" ILD with TPC

Summary

- We study LLPs in parameter space regions complementary to LHC searches
- Inclusive search for with two tracks from a displaced vertex
 - → a simple vertex-finding algorithm developed, with a set of cuts aimed to suppress background from the overlay events and hard SM processes
- For heavy scalars production, with small mass splittings between LLP and DM and low-momenta decay products, good sensitivity from $\Delta m = 2$ GeV
- Reconstruction of **highly boosted**, **light** pseudoscalar decaying into muons performed with the same algorithm and procedure indicates good sensitivity for **masses** ≥ **1 GeV**
- Estimated 95% CL limits on signal cross section indicate ILD's high reach for a wide range of lifetimes (0.003-10 m, depending on scenario)
- Alternative ILD design used for comparison between all-silicon tracker and TPC
 - → tracking tests for heavy scalars confirm **TPC can improve the reach** in LLP searches

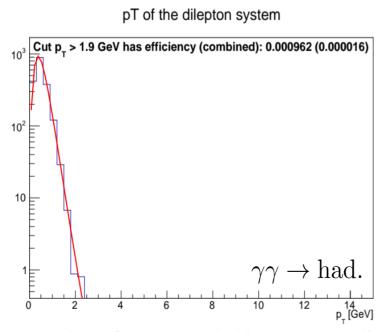
BACKUP

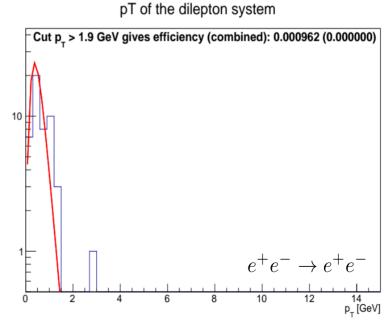


Vertex finding strategy

Approach as simple and general as possible:

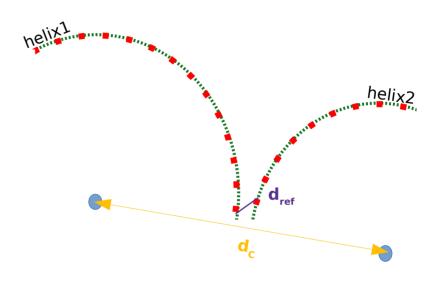
- Consider tracks in pairs
- As the TPC is not sensitive to track direction:
 - → use **both track direction** (charge) **hypothesis** for vertex finding
 - → consider opposite-charge track pairs only
 - → select pair with closest starting points
- Reconstruct vertex in between points of closest approach of helices
 - → Require distance < 25 mm





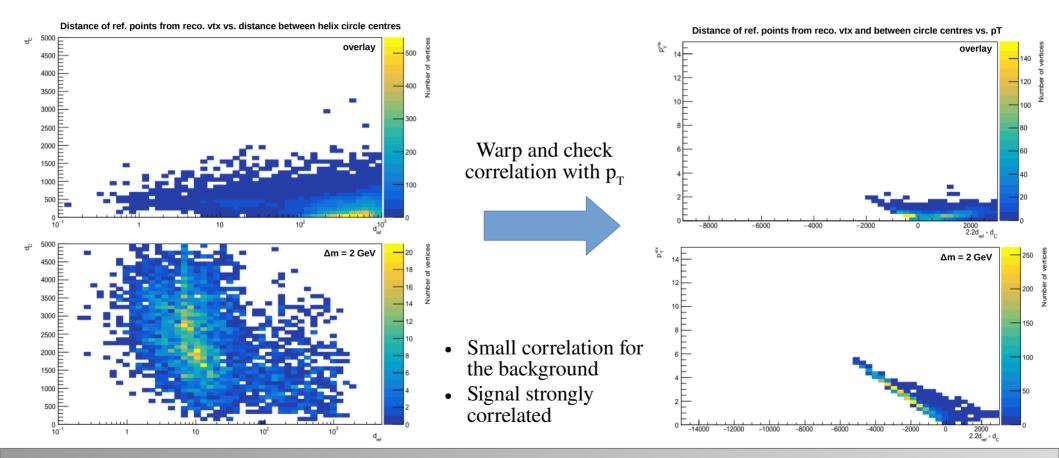
Final selection – pT

- We consider $\gamma\gamma \rightarrow had$. and e^+e^- samples separately
- Estimated background eff. from fitted distributions $\sim 10^{-3} (\sim 10^{-5} 10^{-7})$ with preselection)
- Very small statistics in e^+e^- sample after preselection \rightarrow fit shape from $\gamma\gamma \rightarrow had$. with floating normalisations


Norm = number of events, scaled by corresponding Poisson expectation values

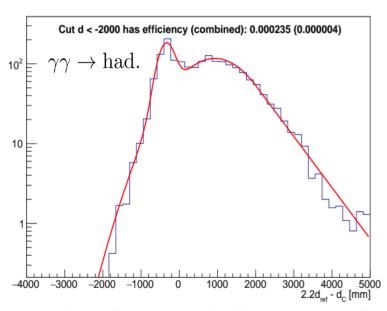
Final selection – other variables

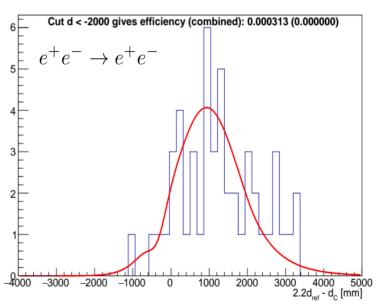
- At least one more (independent) variable needed to achieve the assumed reduction
- We expect that signal tracks should come out of a single point → reference points should be close
- In busier backgound events, still many tracks evade the cuts e.g. curlers, secondary decays
- → either far reference points or close centres of helices


- **d**_{ref} distance between reference points (TrackStates / first hits)
- d_C distance between centres of helices projections into XY plane

Final selection – second variable

- New variable(s) should be uncorrelated with pT to make the cuts independent
- $2.2d_{ref} d_C$ good for optimal signal-background separation \rightarrow use it to look for correlation



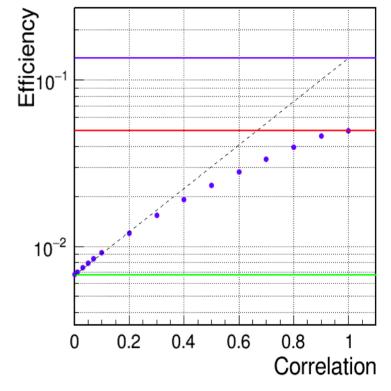


Final selection – second variable

- Same approach as for the pT
- For $2.2d_{ref} d_C \le -2000$ mm, signal eff. $\sim 37\%$ ($\Delta m = 2 \text{ GeV}$)
- Estimated background eff. from fitted distributions $\sim 10^{-4} (\sim 10^{-6} 10^{-7})$ with preselection)
- Total expected efficiency at the level of $\sim 10^{-9}$ ($\sim 10^{-10}$) for $\gamma\gamma \rightarrow had$. (e^+e^-pairs)

Norm = number of events, scaled by corresponding Poisson expectation values

Selection assuming correlations


For small correlations *r* between *x* and *y*, total selection efficiency can be described as

$$\epsilon_{xy} = \epsilon_y^{(1-r)} \epsilon_x, \ \epsilon_x > \epsilon_y$$

For cuts on \mathbf{p}_{T} and $\mathbf{2.2d}_{\mathrm{ref}} - \mathbf{d}_{\mathrm{C}}$ (slide 5), assuming 30% correlation, for $\gamma\gamma \rightarrow \mathrm{had}$. (e⁺e⁻ pairs) that gives:

- $2.8 \cdot 10^{-6} (3.4 \cdot 10^{-6})$
- $4.6 \cdot 10^{-8} (1.7 \cdot 10^{-9}) \leftarrow \text{combined with preselection}$

Combined cut efficiency $x > 2 \cap y > 3$

