"Grenoble bridge from HERA to EIC" by W. Turner

Extraction of the strong coupling with HERA and EIC inclusive data

Salim Cerci¹, Zuhal Seyma Demiroglu^{2,3}, Abhay Deshpande^{2,3,4}, Paul R. Newman⁵, Barak Schmookler⁶, Deniz Sunar Cerci¹, Katarzyna Wichmann⁷

¹ Adiyaman University, Faculty of Arts and Sciences, Department of Physics, Turkiye
 ² Center for Frontiers in Nuclear Science, Stony Brook University, NY 11764, USA
 ³ Stony Brook University, Stony Brook, NY 11794-3800, USA
 ⁴ Brookhaven National Laboratory, Upton, NY 11973-5000, USA
 ⁵ School of Physics and Astronomy, University of Birmingham, UK
 ⁶ University of California, Riverside, Department of Physics and Astronomy, CA 92521, USA
 ⁷ Deutsches Elektronen-Synchrotron DESY, Germany

Eur. Phys. J. C (2023) 83: 1011 arXiv:2307.01183

Why look at a_s?

 αs is least known coupling constant;

needed to constrain GUT scenarios; cross section predictions, including Higgs;

. . .

Gluon-Fusion Higgs production, LHC 13 TeV

PDFs and/or **αs** limit: precision SM and Higgs measurements, BSM searches,

PDG21: αs = 0.1175 ± 0.0010 (w/o lattice)

2. Gwenlan@Moriond22 o

what is true α s central value and uncertainty?

new precise determinations have important role to play

HERA combined inclusive DIS

HERA DIS is core of every PDF extraction

I HERAPDF
philosophy

HERAPDF approach uses <u>only</u> HERA data in global QCD fit

Is DIS @ HERA enough for α_s estimation?

Descripted Possible simultaneous determination of PDFs and $\alpha_s(M_z)$ at NNLO

Recent examples from HERA

H1 and ZEUS

e-beam energy (GeV)	p-beam energy (GeV)	$\sqrt{s} \; (\text{GeV})$	Integrated lumi (fb^{-1})
18	275	141	15.4
10	275	105	100
10	100	63	79.0
5	100	45	61.0
5	41	29	4.4

Wichmann

(

DIS

2024

NNLO QCD analysis details

- EIC pseudo-data created using HERAPDF2NNLO with $\alpha_s(M_z) = 0.116$
- HERAPDF procedure used
- Cuts
 - Q² > 3.5 GeV²
 - $W^2 = Q^2(1-x)/x > 10 \text{ GeV}$
 - 0.001 < y < 0.95
- Pseudodata uncertainties
 - Most data points have uncorrelated systematic uncertainty of 1.9%, extending to 2.75% at lowest y values
 - Additional normalisation uncertainty of 3.4% taken to be fully correlated between data at each CME, and fully uncorrelated between different CMEs

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{25}; \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1 + E_{u_v} x^2\right); \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}; \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} \left(1 + D_{\bar{U}} x\right); \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{aligned}$$

Wichmann @ DIS 2024

10

Note:

scale uncertainty much reduced when including EIC data HERA jet data carry less wight

So how about no jets at all? ...

Simultaneous PDF and α_s fit with only inclusive data from HERA and EIC

Inclusive data only sensitive to α_s due to EIC kinematic phase-space and high-x quark evolution

I stunning improvement! no scale uncertainty for DIS data I studies needed

Π

DESY.

Checking robustness of results

- Restricting data range by imposing $Q^2_{_{min}}$ (or x $_{_{min}}$) cuts has only very small impact on result

 \square EIC impact traceable to the large x, moderate Q^2 region

- There is some sensitivity to W² cut:
 - Default (> 10 GeV²) yields experimental precision 0.004
 - Switching to > 15 GeV² leads to experimental precision 0.006
 - [] Important to avoid sensitivity to higher twist or resummation effect
- Looking at "only" 1 fb⁻¹ of EIC data
 - Precision is only a factor ~2 worse when fitting only one low $J\square$ EIC beam energy
 - I result achievable in ~1 year of early data taking
 - Doubling <u>uncorrelated</u> systematic uncertainties: 0.4% [1.7%
 - important to understand systematics early on

Origin of EIC impact

EIC impact traceable to large x, moderate Q² region Why does large x, intermediate Q^2 data improve precision so much?

Few words on theory uncertainties

- 'Scale' uncertainties [] uncertainties due to missing higher orders beyond NNLO in the theory
 - Expected to be small for inclusive data, and covariances with other uncertainties have to be considered (hence generally omitted in global fits)
- Moving the machinery to N³LO will make them even smaller
 - One possible way to estimate these uncertainties
- Ongoing work by global fitting groups (eg NNPDF arXiv:1906.10698) to develop a consistent framework based on correlation matrices
 - outcomes eagerly awaited
 - may become very important in EIC era

Message to take away

- Using EIC DIS data will make tremendous difference in $lpha_{s}({
 m M_{Z}})$ determination
- Can be further improved by
 - Adding inclusive jet and dijet EIC data to the QCD analysis
 - Adding other observables: event shapes, jet substructure, jet radius parameters
 - Investigating impact of EIC data in global QCD fits, including data from the LHC and elsewhere

