

pean Research Counci

31st International Workshop on Deep Inelastic Scattering DIS2024 Maison MINATEC, Grenoble, April 10th 2024

C-eh high-energy EW measurements

FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL "Unha maneira de facer Europa'

hh

See also the talks by Bruce Mellado (Higgs and BSM), Hamzeh Khanpour (γγ collisions), Amanda Cooper-Sarkar (PDFs and precision QCD) and Paul Newman (status and plans).

I. Introduction: accelerator, detector and physics.

- 2. EW physics and its impact on hh.
- 3. Top physics.
- 4. Summary.

LHeC and FCC-eh:Top and EW measurements.

References:

• Future Circular Collider CDR:Vol. 1 Physics opportunities (Eur. Phys. J. C79 (2019) no.6, 474) and Vol. 3 FCC-hh: The Hadron Collider (Eur. Phys. J. ST 228 (2019) no.4, 755-1107);

- LHeC CDR, 1206.2913 and update 2007.14491;
- European Strategy Update: Briefing Book, 1910.11775;
- 2201.02436;

• Talks at the LHeC/FCC-eh/PERLE workshop, October 26th-28th 2022, https://indico.ijclab.in2p3.fr/event/8623/;

• Talks at the Synergy workshop between ep/eA and pp/pA/AA physics and experiments, February 29th-March 1st 2024, https:// indico.cern.ch/event/1367865/.

• LHeC idea born in 2005: upgrade of the HL-LHC to study DIS at the terascale.

• It must be able to run concurrently with pp (also FCC-eh), plus limitations on power consumption, high luminosity for Higgs studies,... \Rightarrow energy

recovery linac as baseline.

LHeC and FCC-eh: Top and EW measurements: 1. Introduction.

Accelerators:

LHeC and FCC-eh: Top and EW measurements: I. Introduction.

PERLE – Powerful Energy Recovery Linac for Experiments

Duty factor

CW

Accelerators:

arameter	Unit]	FCC-eh			
ер	P=±0.8 (e ⁻)	CDR	$\operatorname{Run} 5$	Run 6	Dedicated	E_p =20 TeV	$E_p=5$
C_e	${\rm GeV}$	60	30	50	50	60	6
V _p	1011	1.7	2.2	2.2	2.2	1	1
p	$\mu \mathrm{m}$	3.7	2.5	2.5	2.5	2.2	2.
e	\mathbf{mA}	6.4	15	20	50	20	2
V_e	10 ⁹	1	2.3	3.1	7.8	3.1	3.
*	\mathbf{cm}	10	10	7	7	12	1
uminosity	$10^{33}{\rm cm}^{-2}{\rm s}^{-1}$	1	5	9	23	8	1

1810.13022

N.Armesto, 10.04.2024

DIS at $\sqrt{s} \simeq 1.3/2.2/3.5$ TeV,

PERLE @ IJCLab international collaboration bringing all	S-turn ERL		Parameter	Unit]	LHeC		FCC	C-eh
aspects together to demonstrate readiness of Energy Recovery for HEP collider applications			ер	P=±0.8 (e ⁻)	CDR	$\operatorname{Run} 5$	Run 6	Dedicated	E_p =20 TeV	$E_p=5$
first multi-turn ERL, based on SRF			E_e	${ m GeV}$	60	30	50	50	60	6
at 10MW power regime			N_p	1011	1.7	2.2	2.2	2.2	1	1
	Target Parameter	Unit Value	ϵ_p	$\mu \mathrm{m}$	3.7	2.5	2.5	2.5	2.2	2.
PEKLE	Injection energy Electron beam energy	MeV 7 MeV 500	I_e	\mathbf{mA}	6.4	15	20	50	20	2
	Normalised Emittance γε _{x,γ}	mm 6 mrad	N_e	10 ⁹	1	2.3	3.1	7.8	3.1	3.
	Average beam current Bunch charge	mA 20 pC 500	β^*	\mathbf{cm}	10	10	7	7	12	1
TITITT TO THE OUT	Bunch length Bunch spacing	mm 3 ns 25	Luminosity	$10^{33}{\rm cm}^{-2}{\rm s}^{-1}$	1	5	9	23	8	1
PERLE – Powerful Energy Recovery Linac for Experiments	Duty factor	CW								

LHeC and FCC-eh: Top and EW measurements: 1. Introduction.

Accelerators:

 $\mathscr{L}dt \sim 1 - 2 \ ab^{-1} \sim 1000 \times HERA$

<u>1810.13022</u>

N.Armesto, 10.04.2024

LHeC and FCC-eh:Top and EW measurements: I. Introduction.

Accelerators:

Parameter	Unit	LHeC	$\substack{ {\rm FCC-eh} \\ (E_p = 20 {\rm TeV}) }$	$\substack{ {\rm FCC-eh} \\ (E_p = 50 {\rm TeV}) }$
Ion energy E_{Pb}	PeV	0.574	1.64	4.1
Ion energy/nucleon E_{Pb}/A	TeV	2.76	7.88	19.7
Electron beam energy E_e	GeV	50	60	60
Electron-nucleon CMS $\sqrt{s_{eN}}$	${ m TeV}$	0.74	1.4	2.2
Bunch spacing	ns	50	100	100
Number of bunches		1200	2072	2072
Ions per bunch	10^{8}	1.8	1.8	1.8
Normalised emittance ϵ_n	$\mu \mathrm{m}$	1.5	1.5	1.5
Electrons per bunch	10 ⁹	6.2	6.2	6.2
Electron current	$\mathbf{m}\mathbf{A}$	20	20	20
IP beta function β_{A}^{*}	cm	10	10	15
e-N Luminosity	$10^{32} {\rm cm}^{-2} {\rm s}^{-1}$	7	14	35

810.13022

Detectors:

L=13.2 m [FCCeh:19.3 about CMS size]

→ Modular structure for fast installation, fitting inside the L3 magnet in IP2.
 → Forward-backward symmetrised version would allow eh and hh collisions in the same IP (2201.02436).

LHeC and FCC-eh: Top and EW measurements: 1. Introduction.

→ Large acceptance, precision device: design determined by kinematics and high precision (H→bb in CC).

→ Low radiation (1/100 that of pp) enables sensitive technology such as HV CMOS to be used.

→ Low field dipole inserted before the HCAL to ensure head-on ep collision; conventional solenoid.

→ Forward (p,n) and backward (e, γ) tagging detectors.

DIS at the energy frontier:

LHeC and FCC-eh: Top and EW measurements: 1. Introduction.

• Deliverables of ep/eA:

➔ Highest resolution microscope: discovery in QCD.

→ Empowering the LHC/FCC

programmes.

→ Precision Higgs facility together with HL-LHC/FCC-hh.

→ Precision and discovery facility (top, EW, BSM).

→ Unique nuclear physics facility.

- Contribution to LHC/FCC:
- → Improve SM measurements.
- → Searches for BSM.

→ Flavor physics of heavy quarks and leptons.

→ Higgs properties.

→ QCD at high density/temperature.

DIS at the energy frontier:

LHeC and FCC-eh: Top and EW measurements: I. Introduction.

• Deliverables of ep/eA:

➔ Highest resolution microscope: discovery in QCD.

→ Empowering the LHC/FCC

programmes.

→ Precision Higgs facility together with HL-LHC/FCC-hh.

→ Precision and discovery facility (top, EW, BSM).

→ Unique nuclear physics facility.

- Contribution to LHC/FCC:
- → Improve SM measurements.
- → Searches for BSM.

→ Flavor physics of heavy quarks and leptons.

→ Higgs properties.

→ QCD at high density/temperature.

DIS at the energy frontier:

LHeC and FCC-eh: Top and EW measurements: 1. Introduction.

Polarized e p cross section

- -NC -CC LHeC
- --- NC --- CC EIC
 - NC CC FCC-eh
- ★NC ★CC HERA-H1 (P=0)

10⁵

• Deliverables of ep/eA:

→ Highest resolution microscope: discovery in QCD.

→ Empowering the LHC/FCC

programmes.

Precision Higgs facility together with HL-LHC/FCC-hh.

→ Precision and discovery facility (top, EW, BSM).

→ Unique nuclear physics facility.

- Contribution to LHC/FCC:
- → Improve SM measurements.
- → Searches for BSM.

→ Flavor physics of heavy quarks and Q² [GeV²] leptons.

→ Higgs properties.

 \rightarrow QCD at high density/temperature.

10⁴

High precision ep measurements used as input in hh analyses for their improvements

ep measurements to considerably improve hh physics output, e.g., in final combinations

LHeC and FCC-eh: Top and EW measurements: 1. Introduction.

ep analyses with sensitivity complementary to hh analyses to complete the overall hh physics program

High precision ep measurements used as input in hh analyses for their improvements

→ Empowerment of hh program. \rightarrow Input to pp physics analyses improving sizable uncertainties and limitations. nput

ep measurements to considerably improve hh physics output, e.g., in final combinations

LHeC and FCC-eh: Top and EW measurements: 1. Introduction.

ep analyses with sensitivity complementary to hh analyses to complete the overall hh physics program

nput

High precision ep measurements used as input in hh analyses for their improvements

→ Empowerment of hh program. \rightarrow Input to pp physics analyses improving sizable uncertainties and limitations.

> ep measurements to considerably improve hh physics output, e.g., in final combinations

LHeC and FCC-eh: Top and EW measurements: 1. Introduction.

ep analyses with sensitivity complementary to hh analyses to complete the overall hh physics program

- → Competitive measurements and combination of results.
- \rightarrow Uncorrelated uncertainties.
- \rightarrow Resolve common/correlated expt. uncertainties.
- Resolve correlations in parameters of interest. \rightarrow
- \rightarrow Empowers global fits.

High precision ep measurements used as input in hh analyses for their improvements

→ Empowerment of hh
 program.
 → Input to pp physics
 analyses improving sizable
 uncertainties and limitations.

ep measurements to considerably improve hh physics output, e.g., in final combinations

nput

LHeC and FCC-eh: Top and EW measurements: 1. Introduction.

- → Competitive measurements and combination of results.
- → Uncorrelated uncertainties.
- → Resolve common/correlated expt. uncertainties.
- → Resolve correlations in parameters of interest.
- → Empowers global fits.

EW physics: W mass

- Many EW physics opportunities (spacelike vs. timelike in e⁺e⁻ /pp) through PDF+EW fits:W&Z mass, $\sin^2 \theta_W^{eff,l}$, V and A NC/CC couplings to light quarks,...
- LHeC will provide additional precision, though PDFs, to the determination of M_W at HL-LHC.

LHeC and FCC-eh: Top and EW measurements: 2. EW..

W-boson mass HL-LHC + LHeC PDFs $\Delta m_W = \pm 2 \text{ MeV}$ × Direct measurements LEP2 Tevatron ATLAS CDF Indirect determinations LHeC-50 \rightarrow LHeC-60 \rightarrow FCC-eh \rightarrow \rightarrow ±2 MeV (HL-FCC-eh + LHeC-60 \times arXiv:2203.06237 **PDG** [2020] 80.35 80.4 m_w [GeV]

EW physics: W mass

- Many EW physics opportunities (spacelike vs. timelike in e⁺e⁻ /pp) through PDF+EW fits:W&Z mass, $\sin^2 \theta_W^{eff,l}$, V and A NC/CC couplings to
- PDFs, to the determination of M_W at HL-LHC.

EW physics: $\sin^2 \theta_W$

- Direct constraints on $\sin^2 \theta_W^{eff,l}$, higher order corrections included: $\sin^2 \theta_W^{eff,l}(\mu^2) = \kappa_{NC,\ell}(\mu^2) \sin^2 \theta_W$
- Scale dependence through simultaneous fits with PDFs. Indirect determination through improving LHC measurements (FB asymmetries).

LHeC and FCC-eh: Top and EW measurements: 2. EW.

0.23152 ± 0.00016
0.23221 ± 0.00029
0.23098 ± 0.00026
0.23148 ± 0.00033
0.23142 ± 0.00106
0.23101 ± 0.00053
0.23080 ± 0.00120
0.23140 ± 0.00036
0.23153 ± 0.00018
0.23153 ± 0.00015
0.23153 ± 0.00008
LHeC PDFs

 $\Delta \sin^2 \theta_{w}$ (FCC-eh) = ±0.00011 $= \pm 0.00010_{(exp)} \pm 0.00004_{(PDF)}$

Δsin²θ (LHeC-50) $= \pm 0.00021$ Δsin²θ (LHeC-60) $= \pm 0.00015$ $\Delta \sin^2 \theta_w$ (FCC-eh+LHeC) = ±0.000086

EW physics: $\sin^2 \theta_W$

- Direct constraints on $\sin^2 \theta_W^{eff,l}$, higher order $\sin^2 \theta_{\rm W}^{\rm eff,\ell}(\mu^2) = \kappa_{\rm NC,\ell}(\mu^2) \sin^2 \theta_{\rm W}$ corrections included:
- Scale dependence through simultaneous fits with PDFs.
- Indirect determination through improving LHC measurements (FB asymmetries).

LHeC and FCC-eh: Top and EW measurements: 2. EW.

10⁴

 $\Delta \sin^2 \theta_{w}$ (FCC-eh) = ±0.00011 $= \pm 0.00010_{(exp)} \pm 0.00004_{(PDF)}$

Δsin²θ (LHeC-50) $= \pm 0.00021$ Δsin²θ (LHeC-60) $= \pm 0.00015$ $\Delta \sin^2 \theta_{w}$ (FCC-eh+LHeC) = ±0.000086

• Coupling of γ ,Z,W to light flavours not accessible in other processes; also BSM contributions (e.g., in the SMEFT framework) and running are measurable.

$$g_A^f = \sqrt{\rho_{\text{NC},f}} I_{\text{L},f}^3,$$

$$g_V^f = \sqrt{\rho_{\text{NC},f}} \left(I_{\text{L},f}^3 - 2Q_f \kappa_f \sin^2\theta \right)$$

LHeC and FCC-eh: Top and EW measurements: 2. EW.

2007.11799, 2203.06237

N.Armesto, 10.04.2024

VQ² [GeV]

• Coupling of γ ,Z,W to light flavours not accessible in other processes; also BSM contributions (e.g., in the SMEFT framework) and running are measurable.

$$g_A^f = \sqrt{\rho_{\text{NC},f}} I_{\text{L},f}^3,$$

$$g_V^f = \sqrt{\rho_{\text{NC},f}} \left(I_{\text{L},f}^3 - 2Q_f \kappa_f \sin^2\theta \right)$$

LHeC and FCC-eh: Top and EW measurements: 2. EW.

2007.11799, 2203.06237

N.Armesto, 10.04.2024

VQ² [GeV]

• Coupling of γ ,Z,W to light flavours not accessible in other processes; also BSM contributions (e.g., in the SMEFT framework) and running are measurable.

$$g_A^f = \sqrt{\rho_{\text{NC},f}} I_{\text{L},f}^3,$$

$$g_V^f = \sqrt{\rho_{\text{NC},f}} \left(I_{\text{L},f}^3 - 2Q_f \kappa_f \sin^2\theta \right)$$

LHeC and FCC-eh: Top and EW measurements: 2. EW.

2007.11799, 2203.06237

N.Armesto, 10.04.2024

VQ² [GeV]

• Coupling of γ ,Z,W to light flavours not accessible in other processes; also BSM contributions (e.g., in the SMEFT framework) and running are measurable.

$$g_A^f = \sqrt{\rho_{\text{NC},f}} I_{\text{L},f}^3,$$

$$g_V^f = \sqrt{\rho_{\text{NC},f}} \left(I_{\text{L},f}^3 - 2Q_f \kappa_f \sin^2\theta \right)$$

LHeC and FCC-eh: Top and EW measurements: 2. EW.

2007.11799, 2203.06237

 Triple and quartic gauge couplings can be probed (D. Britzger, EPS-HEP2023) (also in $\gamma\gamma$ mode).

LHeC and FCC-eh: Top and EW measurements: 2. EW.

N.Armesto, 10.04.2024

• At the LHeC, limits on several CKM matrix elements can be set using single top production (V_{tb} to 1% at LHeC and FCC-eh): polarisation essential.

LHeC and FCC-eh: Top and EW measurements: 3. Top.

Top physics: CKM

N.Armesto, 10.04.2024

tW:

Top physics: anomalous couplings

- Anomalous couplings can be probed, limits competitive with HL-LHC.
- Checks of SM predictions.

LHeC and FCC-eh: Top and EW measurements: 3. Top.

Top physics: FCNC

• Also top FCNC (suppressed in the SM and enhanced through BSM) or CP violation in top Yukawa couplings: competitive/complementary with other machines.

LHeC and FCC-eh: Top and EW measurements: 3. Top.

I. Cakir, Yilmaz, Denizli, Senol, Karadeniz, O. Cakir, Adv. High Energy Phys. 2017, 1572053 (2017)

N.Armesto, 10.04.2024

LHeC and FCC-eh: Top and EW measurements.

LHeC and FCC-eh:

→ Have a physics case on their own: obviously QCD (both precision and discovery in ep and eA), but also EW, top, Higgs, BSM.

→ Enlarge the reach of hadronic colliders into (higher) precision (PDFs, factorisation), both for pp and for AA.

→ Have complementarities and synergies with the other collision modes: hh and e⁺e⁻.

2023 Adapted from Jorgen d'Hondt proton and nuclear structure from EIC and HERA to LH novel QCD with high-energy DIS physics: what do we discover when breast general-purpose high-energy physics programme: prec enabling direct discoveries and measurements in EW, Higgs and top phy ep/eA-physics empowering pp/pA/AA-physics (LHC an improving the ATLAS, CMS, LHCb and ALICE discovery potential with res developing a general-purpose ep/eA detector for LHeC critical detector R&D (DRD collaborations), integrate in the FCC framew developing a sustainable LHeC and FCC-eh collider prop design the interaction region, power and cost, coherent collider parame

Coordination Panel: N. Armesto, M. Boonekamp, O. Brüning, D. Britzger, J. D'Hondt (spokesperson), M. D'Onofrio, C. Gwenlan, U. Klein, P. Newman, Y. Papaphilippou, C. Schwanenberger, Y. Yamazaki

LHeC and FCC-eh:Top and EW measurements.

MS

2024

Plans:

The ep/eA study at the LHC and FCC – new impactful goals for the community

WS	2025	TWS	input to ESPP		
				typically 2-3 conveners	
eC and I	FCC-eh			per theme	
aking prot	tons and nuclear mat	ter ir	n smaller pieces	 annual ep/eA workshops (WS) 	
ision pl sics with i	nysics and search high-energy DIS collis	ies ions		 final thematic workshop with closing 	
				reports to inform the	
d FCC) ults from (a high-energy DIS phy	vsics	programme	process with impactful information (TWS)	
and FC ork, one d	C-eh letector for joint ep/p	p/eA	/pA/AA physics	 inform the community with regular ep/eA Newsletters 	
gramme	9			 everybody is welcome to join 	
eters & rur	n plan, beam optimiza	tion	,		

2023 Adapted from Jorgen d'Hondt proton and nuclear structure from EIC and HERA to LHe novel QCD with high-energy DIS physics: what do we discover when break natter in smaller pieces general-purpose high-energy physics programme: precis rches enabling direct discoveries and measurements in EW, Higgs and top physiollisions ep/eA-physics empowering pp/pA/AA-physics (LHC and improving the ATLAS, CMS, LHCb and ALICE discovery potential with resul physics programme developing a general-purpose ep/eA detector for LHeC a critical detector R&D (DRD collaborations), integrate in the FCC framewor p/pp/eA/pA/AA physics developing a sustainable LHeC and FCC-eh collider prog design the interaction region, power and cost, coherent collider parametenization, ...

Coordination Panel: N. Armesto, M. Boonekamp, O. B J. D'Hondt (spokesperson), M. D'Onofrio, C. Gwenlan, U. Klein, P. Newman, Y. Pawanenberger, Y. Yamazaki

LHeC and FCC-eh:Top and EW measurements.

WS

2024

Plans:

LHeC and FCC-eh:Top and EW measurements.

Plans:

LHeC and FCC-eh:Top and EW measurements.

Backup:

Lepton-proton/nucleus scattering facilities 10 ¹⁰ Luminosity $(10^{30} \text{cm}^{-2} \text{s}^{-1})$ LTFC q 10 HERA and CERN MESA **EIC Projects** Jlab 6+12 8 10 **Fixed Target** SLAC 10 **10**⁶ **10**⁵ FCC-ep CEIC2 MEIC2 HL-RHIC LHeC .MEIC.1 10 eRHIC CepC-SppC-ep 10^{3} COMPASS CEIC1 10^{2} BCDMS HERMES 10 NMC co MK 1000 L/fb⁻¹ 10^{2} **10**³ -] 10 10 800 cms Energy (GeV) 600 400 Luminosities: ~10³⁴ (10³³) cm⁻²s⁻¹ 200

LHeC and FCC-eh: Top and EW measurements: 1. Introduction.

in ep (ePb) (details in backup).

Accelerators:

N.Armesto, 10.04.2024

0

Luminosities:

										ePh	1
Parameter	Unit]	LHeC		FC	C-eh				
		CDR	$\operatorname{Run} 5$	Run 6	Dedicated	$E_p = 20 \mathrm{TeV}$	$E_p{=}50{ m TeV}$	Parameter	Unit	LHeC	FCC-eh
E_e	${\rm GeV}$	60	30	50	50	60	60	T T	D V	0 574	$(E_p=20 \text{ TeV})$
Nn	1011	1.7	2.2	2.2	2.2	1	1	Ion energy $E_{\rm Pb}$ Ion energy/nucleon $E_{\rm Pb}/A$	Pev TeV	0.574 2.76	1.64 7.88
E-	μm	3.7	2.5	2.5	2.5	2.2	2.2	Electron beam energy E_e	GeV	50	60
I	mA	6.4	15	2.0	50	20	20	Electron-nucleon CMS $\sqrt{s_{eN}}$	${ m TeV}$	0.74	1.4
N	109	1	0.0	20	7.9	20	20	Bunch spacing	ns	50	100
Ne	10-	1	2.3	3.1	(.0	3.1	3.1	Number of bunches	108	1200	2072
β*	cm	10	10	7	7	12	15	Normalised emittance 6	10-	1.8	1.8
Luminosity	$10^{33}{\rm cm}^{-2}{\rm s}^{-1}$	1	5	9	23	8	15	Electrons per bunch	10 ⁹	6.2	6.2
								Electron current	\mathbf{mA}	20	20
					\backslash			IP beta function β_A^*	cm	10	10
					\backslash	1810.	13022	e-N Luminosity	$10^{32} \text{cm}^{-2} \text{s}^{-1}$	7	14
$ \begin{array}{c} \int L/fb^{-} \\ 800 \\ 600 \\ 400 \\ 200 \\ LS \\ 0 \\ 1 \end{array} $	-1 Run 5 4 2 3 4 5	LS5 6	Rur 7 8	9 10	Dedic Ru LS6	ated n 3 14 15	 P=±0. used in Positr FCC- ePb in I/I00 th 	8 (electrons): in BSM. ons: P=0, ~1/10 eh could deliver ntegrated lumino nose in ep (10 ti	nporta 00 lum ~2 ab osities mes sr	nt fo inos -I can nallo	or Hig sity. be est er lum
		-				years	times I() times smaller	runnin	g tir	ne).

LHeC and FCC-eh:Top and EW measurements: I. Introduction.

Higgs, not

estimated

luminosity •

