Overview of the MOLLER experiment April 10, 2024

Kent Paschke

UNIVERSITY of VIRGINIA

New Physics with Precision at Low Energies

Low Q² offers complementary probes of new physics at multi-TeV scales

EDM, g_{μ} -2, weak decays, β decay, $0\nu\beta\beta$ decay, DM, LFV...

Parity-Violating Electron Scattering: Low energy weak neutral current couplings (SLAC, Jefferson Lab, Mainz)

Low energy NC interactions ($Q^2 << M_Z^2$) Heavy mediators = contact interactions

for each fermion and handedness combination reach, characterized by mass scale Λ , coupling g

Kent Paschke

$$\int A_X \propto \frac{1}{Q^2 - M^2} \sim \frac{g^2}{\Lambda^2} \longrightarrow \int Continue Control C$$

New physics search "mass scale": quoted with $g^2 = 4\pi$

Electron Scattering and Parity-violation

Scattering cross-section $\sigma = |\mathcal{M}_{\gamma}|$

$$A_{PV} = -m$$

Kent Paschke

 Incident beam is longitudinally polarized •Change sign of longitudinal polarization •Measure fractional rate difference

 $4\sin^2\Theta$ $\sqrt{2\pi\alpha} (3 + \cos^2 \Theta)^2$ $Q_{W}^{e} = 1$ $-4\sin\theta_W$ V ~ 0.0435 ~ 2e-6

Comparing at the weak mixing angle

3

Kent Paschke

Renormalization scheme defines $\sin^2 \theta_W$ at the Z-pole. γ -Z mixing and other diagrams are absorbed into the coupling constant

These channels (*ee* and *ep* elastic, *e*-D DIS) are all unique probes in new physics phase space - the precision on $sin^2\theta_W$ is not the story

MOLLER	ee	electron vector weak cha
P2	ер	proton vector weak char
SoLID	eDIS	quark axial weak charge

MOLLER: Ultra-high precision measure of Q_W^e

A_{PV} ~ 32 ppb $\delta(A_{PV}) \sim 0.8 \text{ ppb}$

 $\delta(Q^{e_{W}}) = \pm 2.1 \% (stat.) \pm 1.1 \% (syst.)$

Search for new flavor diagonal neutral currents Unique (purely leptonic) new physics reach

Best contact interaction reach for leptons at low OR high energy To do better for a 4-lepton contact interaction would require the Giga-Z factory, linear collider, neutrino factory or muon collider

Examples of model sensitivity:

Kent Paschke

JNIVERSITY VIRGINIA

Best Collider $\delta(\sin^2\theta_W)$:

A_I(SLD): 0.00026 A_{fb}(LEP): 0.00029 **CMS(prelim): 0.00031**

MOLLER projected:

 $\delta(\sin^2\theta_W) = \pm 0.00024 \text{ (stat.)} \pm 0.00013 \text{ (syst.)}$

→ ~ 0.1% Matches best collider (Z-pole) measurement

Erler et al., Ann.Rev.Nucl.Part.Sci. (2014)

Measuring A_{PV}

Elastic signal focused on detector -800 -4000 -2000 16000 18000 20000

Kent Paschke

April 10, 2024

A_{PV} ~ 32 ppb with goal of 2% statistical, 1% systematic uncertainty

High luminosity and acceptance <u>Møller Rate ~ 130 GHz</u>

- 125cm, 4.5kW LH₂ target
- 65 µA beam current at 11 GeV
- 85% polarization
- "large" acceptance (~100% of high FOM kinematics)

Control Noise <u>91 ppm at 960 Hz</u>

- Rapid beam helicity flip
- Beam and target stability
- Precision monitoring and calibration
- Low noise detectors and readout electronics

Kent Paschke

MOLLER

Integrate time

- <u>344 beam days (~3-4 calendar years)</u>
- Radiation resistance for materials and electronics

Controlling Systematic Uncertainty

- background monitoring
- optics / acceptance calibration
- polarimetry
- Beam control, monitoring and calibration
- "spin reversal" tools

April 10, 2024

MOLLER Spectrometer

Kent Paschke

UNIVERSITY VIRGINIA

April 10, 2024

Møller

elastic

1000

Spectrometer Detail

Kent Paschke

April 10, 2024

- Primary A_{PV} measurement uses an array of thin quartz detectors
- High level of segmentation to separately measure Møller signal and background signals

UNIVERSITY VIRGINIA

April 10, 2024

Detector Assembly

Thin quartz, optimized for >25 pe and <4% noise (above counting statistics) (simulations + in-beam tests)

Kent Paschke

JNIVERSITY VIRGINIA

- PMT + base, electrons operate in integrating mode and counting mode (for calibration)
- Radiation hard, to survive experiment lifetime
- Rates / PMT: 4 MHz 4 GHz Total rate: ~220 GHz

Irreducible Backgrounds

10⁷

10⁶

0.6

0.7

Illustration of signal and background distributions

Radial / Azimuthal binning - measures backgrounds under the Møller peak

Incident electrons radiate to lower energy, scatter in background processes but matching energy-angle correlation of Møller scattering

Tracking detectors and auxiliary detectors for calibration and background studies

Integrating mode: asymmetry measurement **Counting mode:** counting/tracking for calibration

GEM tracking chambers

N. Liyanage, UVa

Kent Paschke

156120

Entries

500

Overlapped X-Ray data 2D cluster map

MOLLER spectrometer coils

Kent Paschke

beam leaving hall sensitive to coil alignment

simulated illustration:

April 10, 2024

Quality Assurance and Fitting

Test fitting of magnet and collimator mounting

Kent Paschke

Epoxy thickness variation measurement

SC1 - All Straight Belly Data

Long lead items in fabrication, QA

Tungsten collimators

JNIVERSITY VIRGINIA

Kent Paschke

MOLLER components

Stainless steel bellows, welds passed magnetic susceptibility measurements

MOLLER status

- Fabrication has started for long-lead items
- Fabrication and qualification activity underway at JLab
- Expect to launch rest of fabrication/procurement with ESAAB review in spring

Kent Paschke

ay at JLab hent with ESAAB

MOLLER Collaboration ~ 160 authors, 37 institutions, 6 countries

K. Kumar: Spokesperson R. Fair: Project Manager

Includes experience from E158, PREX, Qweak, PVDIS, HAPPEX, G-Zero

- Will be ready for assembly mid-2025
- Ready for physics in fall 2026
- With an on-time start, you should expect the first physics publication in mid-2027

Next-generation Experiments will provide precise BSM probes

MOLLER	ee	electron vector weak charge
P2	ер	proton vector weak charge
SoLID	eDIS	quark axial weak charge

Summary

Electroweak physics studies with PVES are a powerful tool in the search for new physics

MOLLER, designed for ultra-high precision, will search for new interactions from 100 MeV to 10s of TeV, with reach into new physics phase space that cannot otherwise be accessed.

MOLLER is starting fabrication, to start assembly next year with a path to begin running in 2026

Kent Paschke

Kent Paschke

Appendix

April 10, 2024

MOLLER parameters

Parameter	Value
E [GeV]	≈ 11.0
E' [GeV]	2.0 - 9.0
$ heta_{ m CM}$	50°-130°
$ heta_{ ext{lab}}$	0.26°-1.2°
$\langle Q^2 angle$ [GeV ²]	0.0058
Maximum Current [μ A]	70
Target Length (cm)	125
ρ_{tgt} [g/cm ³] (T= 20K, P = 35 psia)	0.0715
Max. Luminosity $[cm^{-2} sec^{-1}]$	$2.4 \cdot 10^{39}$
σ [µbarn]	≈ 60
Møller Rate @ 65 μ A [GHz]	≈ 134
Statistical Width(1.92 kHz flip) [ppm/pair]	≈ 91
Target Raster Size [mm × mm]	5×5
Production running time	344 PAC-days = 8256 hours
ΔA_{raw} [ppb]	≈ 0.54
Background Fraction	≈ 0.10
$P_{ m B}$	pprox 90%
$\langle A_{PV} \rangle$ [ppb]	≈ 32
$\Delta A_{stat}/\langle A_{expt} \rangle$	2.1%
$\delta(\sin^2 heta_W)_{stat}$	0.00023

from MOLLER TDR

Kent Paschke

Parameter	Random Noise (65 μ A)	
Statistical width (0.5 ms)	\sim 82 ppm	
Target Density Fluctuation	30 ppm	
Beam Intensity Resolution	10 ppm	
Beam Position Noise	7 ppm	
Detector Resolution (25%)	21 ppm (3.1%)	
Electronics noise	10 ppm	
Measured Width (σ_{pair})	91 ppm	

Error Source	Fractional Error (%
Statistical	2.1
Absolute Norm. of the Kinematic Factor	0.5
Beam (second moment)	0.4
Beam polarization	0.4
$e + p(+\gamma) \rightarrow e + X(+\gamma)$	0.4
Beam (position, angle, energy)	0.4
Beam (intensity)	0.3
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.3
$\gamma^{(*)} + p \rightarrow (\pi, \mu, K) + X$	0.3
$e + Al(+\gamma) \rightarrow e + Al(+\gamma)$	0.15
Transverse polarization	0.2
Neutral background (soft photons, neutrons)	0.1
Linearity	0.1
Total systematic	1.1

April 10, 2024

Identical particles, so same to measure either forward or backward scattering.

Figure of merit highest at $\theta_{CM} = 90^{\circ}$ **Optimum Acceptance** [90°,120°]

Figure of Merit and Design for Precision

How do you maximize the azimuthal acceptance of the spectrometer?

Idea: 50% Azimuth, 100% Acceptance

Identical particles - you only need one of the two for flux integration

Odd number of octants. Accept CM[60°,120°] so you always get one of the two electrons from each Møller scattering event

> **Requires polar-angle acceptance with** broad range and very forward angles

- E' = 2.5-8.5 GeV
- $\theta_{lab} = 0.3^{\circ} 1.1^{\circ}$

but provides 100% of the azimuth while leaving ample space for the magnetic elements and supports

- •125 cm long LH2
- •3300W/4500W beam/total power
- 3.7K subcooled
- •25 l/s flow
- •dp/p<30 ppm at 960 Hz

Target

Designed using CFD modeling

Benchmarked on previous croytargets, including previous highest power target: Qweak at 2500 W total

Cooling jets create high flow velocity on windows

CFD calculates density noise pair width ~2ppm at 960Hz

Polarimetry

Goal: 0.4% with two, independent measurements which can be cross-checked

Møller Polarimeter

- "high field" iron target well-known magnetization at saturation
- Coincidence of identical particles low background
- QQQQD spectrometer

Compton

- Detection of backscattered photons and recoil electrons from laser light
- Independent photon and electron analyses are possible
- New publication: dP/P = 0.36% https://doi.org/10.1103/PhysRevC.109.024323

Both systems have important upgrades underway (detectors, target, DAQ, analysis, and simulation studies). The Møller polarimeter is closer to ready for high precision at 11 GeV, with smaller and less crucial upgrades.

SLAC-E158: Weak charge of the electron 997-2004

Møller (*ee*) scattering

First Measurement of the electron-electron weak interaction

 A_{PV} = (-131 ± 14 ± 10) ppb

$$\frac{\delta(\sin^2\theta_W)}{\sin^2\theta_W}$$

$$\mathbf{Q}_{\mathbf{W}} = \mathbf{1} - \mathbf{4} \sin^2 \theta_{\mathbf{W}}$$

SM highly suppressed, so even a weakly-coupled or heavy new physics scenario can stand out

