

Measurements of vectorboson scattering with the ATLAS experiment

Deep Inelastic Scattering (DIS) 2024 Grenoble

9th April 2024

Antonio Gianníní on behalf of the ATLAS collaboration

Outline

- Measurements of Vector Boson Scattering with the ATLAS experiment
- Introduction
- Summary of ATLAS results
- Results' highlights
- Final states
 - ▶ W(I ν) γ + jj
 - ▶ opposite-sign W(I ν)W(I ν) + jj
 - ▶ W(I ν)Z(II) + jj
- Wrap-up

- Diboson physics has been a crucial test of the SM
 - experimental constraints in many diboson channels
 - still huge interest in probing higher ranges
- Vector Boson Scattering (VBS)
 - probe the Electroweak Symmetry Breaking
 - sensitive to New Physics

Model Production Cross Section Measu

DAO total (×2)

TL-PHYS-PUB-2023-039

Tag Jet

[dd]

 10^{-1}

 10^{-2}

 10^{-3}

Experimental perspective

Deep Inelastic Scattering 2024

VVjj

EWK

Theoretical challenges

- Precise theory predictions to constraint QCD and EWK VV+jj productions
 - generations can not distinguish between VBS and no-VBS components
 - non-VBS components: VVV and t-X diagrams
- Understand experimental data with theory predictions
 - high-order corrections impact the phase space
 - modelling description plays a leading role in this phase space

ATLAS results in a nutshell

Channel	Final state	Dataset	ATLAS paper
W+W⁻ + jj	🗚 eνμν + jj	139/fb	Submitted to JHEP
W±W± + jj	lνlν + jj	140/fb	Submitted to JHEP
WZ + jj	🗚 IνII + jj	140/fb	Submitted to JHEP
	4I + jj	140/fb	<u>JHEP 01 (2024) 004</u>
	$2I2\nu + jj$	139/fb	<u>Nature Phys. 19 (2023)</u> <u>237</u>
VV + jj semi-leptonic	vvqq/lvqq/llqq + jj	35/fb	<u>Phys. Rev. D 100 (2019)</u> <u>032007</u>
$W\gamma + jj$	$\nu \gamma$ + jj	140/fb	Submitted to EPJC
7	$II\gamma + jj$	140/fb	<u>Phys. Lett. B 846</u> (2023) 138222
$\mathbf{Z}\gamma \neq \mathbf{J}\mathbf{J}$	$\nu\nu\gamma$ + jj	139/fb	<u>JHEP 06 (2023) 082</u>
$\gamma \gamma \rightarrow WW (\gamma - induced)$	$e\nu\mu\nu + X$	139/fb	<u>Phys. Lett. B 816</u> (2021) 136190

Wy+jj production

- W and γ associated final state
 - clean signal topology
 - both electron and muon channels explored
- Typical VBS-enhanced phase space selection
- Source of background processes
 - ▶ irreducible: QCD Wy+jj production
 - others: non-prompt, top, fakes

Good separation power for the EWK signal against the other SM processes for relevant kinematics

How to: CRs and ML

- Events are categorised in Signal Region (SR) and Control Regions (CRs)
 - constraint the main background, QCD W γ +jj
- Inclusive measurement:
 - SR^{fid}: N_{jets}^{gap} == 0, CR^{fid}: N_{jets}^{gap} > 0
- Differential measurement:
 - SR + 3 CRs based on N_{jets}^{gap} and $I\gamma$ -centrality

Signal vs bkg separation optimised using Machine Learning (ML)

- DNN with 13 kinematic variables
- training in the SR phase space
- Observation of the EWK Wγ+jj
 - ▶ 6.3 σ, μ = 1.5 ± 0.5
 - σ_{EWK} = 13.2 ± 2.5 fb

Deep Inelastic Scattering 2024

Submitted to EPJC Goal: differential measurement arxiv.2403.02809

- Differential measurement performed in high m_{jj} (> 1 TeV) phase space
- Fiducial definition at particle level defined to mimic the reco level selection
 - ▶ the C-factor estimated from Sherpa EWK W γ +jj sample
- Unfolding using iterative Bayesian procedure
 - done for several variables, binning optimised to account for data statistics
- Modelling and jets uncertainties dominate the measurement

Deep Inelastic Scattering 2024

 $\sigma_{\rm EW \ W\gamma jj}^{\rm fid} = \frac{N_{\rm EW \ W\gamma jj}}{L \cdot C_{\rm EW \ W\gamma jj}}$

Another goal: dím-8 EFT

Submitted to EPJC arxiv.2403.02809

• The VBS component is directly sensitive to New Physics via a large

variety of *dim-8 Effective Field Theory (EFT) operators* (Eboli model)

- LO MG+Pythia8 predictions
- constraint using p⁻¹ or p^{-jj}

 $\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{j} \frac{f_{j}^{(8)}}{\Lambda^4} O_{j}^{(8)}$

(-1) (T) (-4)

 Ω^1

• Clipping scan compared with the unitarity bound

		Coefficients [lev ']	Observable	Expected [Iev ']	Observed [lev ']
⁴	15	f_{T0}/Λ^4	p_{T}^{jj}	[-2.4, 2.4]	[-1.8, 1.8]
e<		f_{T1}/Λ^4	p_{T}^{jj}	[-1.5, 1.6]	[-1.1, 1.2]
⁺ T	$10 - \sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$	f_{T2}/Λ^4	$p_{\mathrm{T}}^{\hat{j}j}$	[-4.4, 4.7]	[-3.1, 3.5]
^{L3/V}	E \ I	f_{T3}/Λ^4	$p_{\mathrm{T}}^{\hat{j}j}$	[-3.3, 3.5]	[-2.4, 2.6]
ч <u>–</u>	5	f_{T4}/Λ^4	$p_{\mathrm{T}}^{\hat{j}j}$	[-3.0, 3.0]	[-2.2, 2.2]
		f_{T5}/Λ^4	p_{T}^{jj}	[-1.7, 1.7]	[-1.2, 1.3]
		f_{T6}/Λ^4	$p_{ m T}^{ ilde{j}j}$	[-1.5, 1.5]	[-1.0, 1.1]
	5	f{T7}/Λ^4	$p_{ m T}^{jj}$	[-3.8, 3.9]	[-2.7, 2.8]
	Ĕ / E	f_{M0}/Λ^4	p_{T}^{l}	[-28, 28]	[-24, 24]
	-10 — Exp. 95% CL Limit — Obs. 95% CL Limit —	f_{M1}/Λ^4	p_{T}^{l}	[-43, 44]	[-37, 38]
	Unitarity Bound	f_{M2}/Λ^4	p_{T}^{l}	[-10, 10]	[-8.6, 8.5]
		f_{M3}/Λ^4	p_{T}^{l}	[-16, 16]	[-13, 14]
		f_{M4}/Λ^4	p_{T}^{I}	[-18, 18]	[-15, 15]
	m _{wγ} cut-off [TeV]	f_{M5}/Λ^4	p_{T}^{l}	[-17, 14]	[-14, 12]
		f_{M7}/Λ^4	p_{T}^{l}	[-78, 77]	[-66, 65]

m + m + m + m + 4

O1

1 1

1 [77, 37 - 4]

os-WW+jj production

Submitted to JHEP arxiv.2403.04869

Submitted to JHEP Good ML practice: looser phase space <u>arxiv.2403.04869</u>

Main top background constrained in CR and prediction extrapolated in the SR

- Signal sensitivity enhanced with defining a dedicated DNN model
 - 8 (2-jets) and 10 (3-jets) kinematic variables used as input features
- Dedicated models for 2-jets and 3-jets events
 - recover signal efficiency

dedicated variables set for each category

Goal: observation and measurement arxiv.2403.04869

• Simultaneous CR+SRs fit to extract the signal

component

- ▶ no dedicated QCD WW+jj CR —> floating
- Main uncertainties impact
 - theory (top and EWK), MC stats, jets

Sources	$\frac{\sqrt{(\Delta\mu)^2 - (\Delta\mu')^2}}{\mu} \ [\%]$
MC statistical uncertainty	7.7
Top quark theoretical uncertainties	6.3
Signal theoretical uncertainties	5.8
Jet experimental uncertainties	4.9
Strong W^+W^-jj theoretical uncertainties	1.3
Luminosity	0.8
Misidentified lepton uncertainty	0.5
<i>b</i> -tagging	0.4
Lepton experimental uncertainties	0.1
Others	0.3
Data statistical uncertainty	12.3
Top quark normalisation uncertainty	4.9
Strong W^+W^-jj normalisation uncertainty	2.2
Total uncertainty	18.5

- Observation in this channel
 - ▶ 7.1 σ (observed)
- Fiducial measurement of EWK WW+jj in VBS enhances phase space
 - remove VVV contribution
 - ▶ 2.65 +0.49 -0.46 fb

WZ + jj production

• 3 leptons, MET and additional jets final state

- additional lepton veto, loose m_{jj} > 150 GeV requirement
- SR events divided in N_{jets} == 2 and >=3 categories

Main SM backgrounds

- QCD WZ+jj production (irreducible)
- dedicated ZZ CR (additional lepton)
- b-CR to constraint tt+V process (additional b-jet)

BDT as final discriminant

- 15 inputs variables to separate EWK WZjj vs other backgrounds in SR
- 16 inputs variables to separate ttV and tZj in b-CR
- Adversarial-NN
 - to enhance QCD WZjj production in SR

Deep Inelastic Scattering 2024

Submitted to JHEP EWK vs QCD production <u>arxiv.2403.15296</u>

- EWK- and QCD-WZ+jj production measured simultaneously; measurement in bins of:
 - n_{Jets} {== 2; >= 3} bins and 3 m_{jj} bins
 - QCD-WZ+jj cross section measured by factor 0.71 lower than MC prediction
- WZ+jj differential measurement
 - SR events, predictions scaled by the integrated EWK- and QCD-WZ+jj measurements

- Unfolding of several kinematics variables
 - compared with the MadGraph and Sherpa predictions
 - BDT unfolded as well
- Measurements dominated by statistical uncertainty, followed by jets experimental uncertainties

Goal: dím-8 EFT límíts

Submitted to JHEP arxiv.2403.15296

- Effects from *dim-8 EFT operators* are expected at high invariant mass for the WZ+jj production
 - constraint a set of operators sensitive to
- 2-dim fit based on the BDT and m_T^{WZ} transverse mass

Limits overall better than the Wγ+jj final state, that is actually covering complementary operators

		-
	Expected	Observed
	$[\text{TeV}^{-4}]$	$[\text{TeV}^{-4}]$
$f_{ m T0}/\Lambda^4$	[-7.0, 7.0]	[-1.5, 1.6]
$f_{ m T1}/\Lambda^4$	[-1.1, 1.0]	[-0.7, 0.6]
$f_{ m T2}/\Lambda^4$	[-12, 6]	[-2.4, 1.8]
$f_{ m M0}/\Lambda^4$	[-60, 60]	[-12, 12]
$f_{ m M1}/\Lambda^4$	[-32, 32]	[-15, 15]
$f_{ m M7}/\Lambda^4$	[-30, 30]	[-15, 15]
$f_{\mathrm{S02}}/\Lambda^4$	[-41, 41]	[-18, 18]
$f_{ m S1}/\Lambda^4$		

16

• Measurements of Vector Boson Scattering with the ATLAS experiment

- Measurement of EWK diboson + jj production in VBS-enhanced phase space quite interesting
 - crucial test of the EWK-sector of the SM
 - challenges from theory/experimental side that push us to new strategies
- Additional and new final states covered along the years
 - new measurements released
 - all diboson final states have been observed by ATLAS
 - EFT interpretations performed in this sector
- Stay tuned for new ATLAS results with Run-2 and Run-3 datasets!!!

backup

ss-WW+jj production

Submitted to JHEP arxiv.2312.00420

19

- Final state with the largest ratio (~5) for EWK/QCD WW+jj production
 - qg and gg initiated diagrams not allowed at LO
 - qq/qanti-q suppressed at LO

Events/50 GeV

Data/SM

- Usual VBS selection; same-sign electrons/muons pair
 - veto on additional leptons veto and b-jets
- QCD WZ+jj estimated via MC + data-driven corrections
 - Iarge source of fakes/non-prompts estimated via data-driven

60 Data $W^{\pm}W^{\pm}$ jj EW (bin 1) $W^{\pm}W^{\pm}$ jj EW (bin 2) $W^{\pm}W^{\pm}$ jj EW (bin 3) $W^{\pm}W^{\pm}$ jj EW (bin 4) $W^{\pm}W^{\pm}$ jj EW (bin 5) Summary of MC samples for signal and 50L W[±]W[±]jj EW (bin 6) W[±]W[±]ij QCD WZ QCD WZ EW Non-prompt background processes 40 Tot. Uncert. Conversions Other prompt 30⊢ ATLAS Process, short description ME Generator + parton shower Order Tune PDF set in ME $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ EW, Int, QCD $W^{\pm}W^{\pm}jj$, nominal signal LO NNPDF3.0nlo MADGRAPH5_AMC@NLO2.6.7 + HERWIG7.2 HERWIG 20 EW, Int, QCD $W^{\pm}W^{\pm}jj$, alternative shower MADGRAPH5_AMC@NLO2.6.7 + Pythia8.244 LO NNPDF3.0NLO A14 SR +0.1j@LO SHERPA2.2.11 & SHERPA2.2.2(WWW) & Sherpa NNPDF3.0nnlo EW $W^{\pm}W^{\pm}jj$, NLO pQCD approx. POWHEG BOX2+PYTHIA8.235 (WH) NLO A14 10 EW $W^{\pm}W^{\pm}jj$, NLO pQCD approx. Powheg Boxv2 + Pythia8.230 NLO (VBS approx.) AZNLO NNPDF3.0nlo QCD $W^{\pm}W^{\pm}jj$, NLO pQCD approx. Sherpa2.2.2 +0,1j@LO NNPDF3.0nnlo Sherpa QCD VVjj +0,1j@NLO; +2,3j@LO Sherpa2.2.2 NNPDF3.0nnlo Sherpa 0 EW $W^{\pm}Z/\gamma^{*}jj$ MADGRAPH5_AMC@NLO2.6.2+Pythia8.235 LO A14 NNPDF3.0nlo 1.4 EW $Z/\gamma^* Z/\gamma^* j j$ Sherpa2.2.2 LO NNPDF3.0nnlo Sherpa 1.2⊧ Sherpa2.2.11 +0,1j@NLO; +2,3j@LO $QCD V\gamma jj$ A14 NNPDF3.0nnlo MADGRAPH5_AMC@NLO2.6.5+Pythia8.240 NNPDF3.0nlo $EW V \gamma j j$ LO A14 VVVSHERPA2.2.1 (leptonic) & SHERPA2.2.2 (one $V \rightarrow jj$) +0,1j@LO NNPDF3.0nnlo Sherpa **0.8** t₹V MadGraph5_aMC@NLO2.3.3.p0 + Pythia8.210 NLO A14 NNPDF3.0nlo 0.6⊢ MADGRAPH5_AMC@NLO2.3.3.p1 + PYTHIA8.212 LO A14 NNPDF2.3LO tZq 1000 1500 2000 2500 3000 500 W[±]W[±]jj EFT MadGraph5_AMC@NLO2.6.5 + Pythia8.235 LO NNPDF3.0nlo A14 H^{±±} MADGRAPH5_AMC@NLO 2.9.5 + PYTHIA8.245 LO A14 NNPDF3.0nlo m_{ii} [GeV]

Dífferentíal measurement

Submitted to JHEP arxiv.2312.00420

- SRs based on the lepton flavour (ee, eμ, μe, μμ)
 - ▶ same for the low-mjj CR, one-bin for the WZ-CR
- mjj used to enhance the signal sensitivity in each bin of the measured variables
 - mll is instead used to measure the cross section as function of the mjj
- $\mu^{EW} = 1.15 \pm 0.09$ (stat.) ± 0.05 (mod. syst.) ± 0.05 (exp.

syst.) ± 0.02 (lumi.)

Source	Impact [%]
Experimental	4.6
Electron calibration	0.4
Muon calibration	0.5
Jet energy scale and resolution	1.9
$E_{\rm T}^{\rm miss}$ scale and resolution	0.2
b-tagging inefficiency	0.7
Background, misid. leptons	3.4
Background, charge misrec.	1.0
Pile-up modelling	0.1
Luminosity	1.9
Modelling	4.5
EW $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	0.7
EW $W^{\pm}W^{\pm}jj$, QCD corrections	1.9
EW $W^{\pm}W^{\pm}jj$, EW corrections	0.9
Int $W^{\pm}W^{\pm}ii$ shower scale, PDF & α	0.6
QCD $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	2.6
$QCD W^{\perp}W^{\perp}JJ$, QCD corrections	0.8
Background, WZ scale, PDF & α_s	0.3
Background, WZ reweighting	1.5
Background, other	1.3
Model statistical	1.8
Experimental and modelling	6.4
Data statistical	7.4
Total	9.8

Description	$\sigma_{ m fid}^{ m EW}$ [fb]		
Measured cross section	2.92 ± 0.22 (stat.) ± 0.19 (syst.)		
MG5_AMC+Herwig7	$2.53 \pm 0.04 (PDF) ^{+0.22}_{-0.19}$ (scale)		
MG5_AMC+Pythia8	$2.53 \pm 0.04 (PDF) + 0.22 \\ - 0.19 (scale)$		
Sherpa	$2.48 \pm 0.04 (PDF) + 0.40 (scale)$		
Sherpa \otimes NLO EW	$2.10 \pm 0.03 (PDF) + 0.34 = 0.23$ (scale)		
POWHEG BOX+PYTHIA	2.64		

20

dím-8 EFT constraints Submitted to JHEP

>ല ല്ല 10⁵

Events/250 C

10²

10

10⁻¹

10

Data/SM

ATLAS

EFT fit

 $ii^{\pm}W^{\pm}W \leftarrow qq$

√s = 13 TeV, 139 fb⁻

I W[±]W[±]ii Int

f_{M0}/Λ⁴, best fit

WZ EW

Other prompt ////, Tot. Uncert.

- Phase space sensitive to a variety of dim-8 EFT operators
- 95% exclusion limits as a function of the clipping cut-off
 - tighter limit on T1 excluding up to 2.4 2.5 TeV
- 2-dimensional limits derived w/ a 1.5 TeV unitarisation cut-off and w/o it
 - interesting positive/negative correlation among the operators

VBS: more than a measurement

- Limits on the production of doubly charged H++ via Vector Boson Fusion (VBF)
 - Georgi-Machacek model (Nucl. Phys. B 262 (1985) 463) foresees the presence of an additional quintuplet (H^{±±}, H[±], H⁰) that couples to SM W/Z bosons
- Similar analysis strategy, 2-dim fit on m_{jj} and $m_{\rm T}$ variables
- Excess around 450 GeV: local 3.3, global 2.5

Deep Inelastic Scattering 2024

Submitted to JHEP

arxiv.2312.00420

Status: October 2023

Standard Model Production Cross Section Measurements

More MC generator comparisons

Figure 1: Representative Feynman diagrams for the $W\gamma jj$ final state: (a) EW $W\gamma jj$ production involving no gauge boson self-interactions, (b) bremsstrahlung EW $W\gamma jj$ non-VBS production involving quartic gauge boson interactions, (c) $W\gamma$ VBS involving quartic gauge boson interactions, and (d) Strong $W\gamma jj$ production.

Wy+jj: event selection

Object	Selection requirements
Dressed muons	$p_{\rm T} > 30 {\rm GeV} \text{ and } \eta < 2.5$
Dressed electrons	$p_{\rm T} > 30 \text{ GeV}$ and $ \eta < 2.47$ (excluding $1.37 < \eta < 1.52$)
Isolated photons	$E_{\rm T}^{\gamma} > 22 \text{ GeV} \text{ and } \eta < 2.37 \text{ (excluding } 1.37 < \eta < 1.52\text{) and } E_{\rm T}^{\rm iso} < 0.2E_{\rm T}^{\gamma}$
Jets	At least two jets with $p_{\rm T} > 50$ GeV and $ y < 4.4$, <i>b</i> -jet veto
Missing transverse momentum	$E_{\rm T}^{\rm miss}$ > 30 GeV and $m_{\rm T}^W$ > 30 GeV
VBS topology	$N_{\ell} = 1, N_{\gamma} \ge 1, m_{\ell\gamma} - m_Z > 10 \text{ GeV}$
	$\Delta R_{\min}(\ell, j) > 0.4, \ \Delta R_{\min}(\gamma, j) > 0.4, \ \Delta R_{\min}(\ell, \gamma) > 0.4$
	$\Delta R_{\min}(j_1, j_2) > 0.4, \ \Delta \phi_{\min}(E_{\mathrm{T}}^{\mathrm{miss}}, j) > 0.4$
	$N_{\text{jets}} \ge 2, \ p_{\text{T}}^{j1}, p_{\text{T}}^{j2} > 50 \text{ GeV}$
	$m_{jj} > 500 \text{ GeV}, \Delta y_{jj} > 2$
Fiducial measurement	VBS topology
Differential measurement	VBS topology \oplus ($m_{jj} > 1000$ GeV, $N_{jets}^{gap} = 0$, and $\xi_{W\gamma} < 0.35$)

	$SR^{fid}\left(N_{jets}^{gap}=0\right)$	$\operatorname{CR}^{\operatorname{fid}}\left(N_{\operatorname{jets}}^{\operatorname{gap}}>0\right)$
EW Wyjj	520 ± 141	120 ± 49
Strong <i>Wγjj</i>	1550 ± 830	1970 ± 950
Non-prompt	692 ± 57	698 ± 58
Top quark processes	109 ± 18	183 ± 37
EW + strong $Z\gamma jj$	128 ± 34	163 ± 77
Total	3000 ± 830	3140 ± 960
Data	3341	3143

Wy+jj: pre-vspost-fit

Wy+jj: re-parameterisation

The fitted number of events in region r and bin i is expressed as

$$v_{ri} = \mu_{\text{EW},i} \, v_{ri}^{\text{EW,MC}} + v_{ri}^{\text{strong}} + v_{ri}^{\text{other,bkg}},\tag{2}$$

where $\mu_{\text{EW},i}$ is the signal strength of EW $W\gamma jj$ in bin *i*, and $v_{ri}^{\text{EW},\text{MC}}$ and $v_{ri}^{\text{other},\text{bkg}}$ correspond to the EW $W\gamma jj$ prediction and contributions from reducible background processes, respectively. The strong $W\gamma jj$ prediction is constrained using the signal-suppressed control regions based on the following four relations:

$$v_{CR_A,i}^{\text{strong}} = b_{L,i} v_{CR_A,i}^{\text{strong,MC}}, \qquad v_{CR_B,i}^{\text{strong}} = b_{H,i} v_{CR_B,i}^{\text{strong,MC}}, \qquad (3)$$

$$v_{SR,i}^{\text{strong}} = b_{L,i} c v_{SR,i}^{\text{strong,MC}}, \text{ and } v_{CR_C,i}^{\text{strong}} = b_{H,i} c v_{CR_C,i}^{\text{strong,MC}}.$$

The parameters $b_{L,i}$ and $b_{H,i}$ are sets of bin-dependent free parameters that correspond to the $\xi_{l\gamma} < 0.35$ and $\xi_{l\gamma} > 0.35$ regions, respectively. The low- $\xi_{l\gamma}$ parameter, $b_{L,i}$, is primarily constrained by CR_A, while $b_{H,i}$ is primarily constrained by CR_B. These two sets of parameters introduce additional degrees of freedom to the predicted strong $W\gamma j j$ event yield to allow the fitted number of strong $W\gamma j j$ events to be more consistent with the observed data. A floating parameter c is used to provide a residual correction that can account for any mismodelling across N_{iets}^{gap} . This configuration is found to be more robust against

Wy+jj: inclusive xSection

Wy+jj: more differential plots

Deep Inelastic Scattering 2024

120

 $m_{
m hy}$ [GeV]

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{1}$ $N_{\text{jets}}^{\text{gap}} = 0, \xi_{I\gamma} < 0.35 \text{ (SR)}$

Total unc.

0

1

2

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ $N_{\text{jets}}^{\text{gap}} = 0, \xi_{/\gamma} < 0.35 \text{ (SR)}$

Total unc.

0

0

800

↓ Data, stat. unc.

• Sherpa 2.2.12

MadGraph5+Pythia8

1000

3

 $\Delta \phi_{ii}$ [rad]

0

600

Data, stat. unc.

• Sherpa 2.2.12

MadGraph5+Pythia8

Wy+jj: more differential plots

os-WW+jj: event selection

			Event	t yields
		Process	$n_{\text{jets}} = 2$	$n_{\rm jets} = 3$
		EWK W^+W^-jj	158 ± 27	54 ± 13
		$t\bar{t}$	2394 ± 194	1625 ± 125
Category	Requirements	Single top	491 ± 34	225 ± 21
Leptons	$p_{\rm T} > 27 \text{GeV}$ $ \eta < 2.47 \text{excluding} 1.37 < \eta < 1.52 (\text{electrons})$	Strong W^+W^-jj	1214 ± 256	514 ± 121
	$ \eta < 2.5 (\text{muons})$	W+jets	37 ± 97	19 ± 48
	Identification: Tight	Z + jets	216 ± 62	65 ± 25
	Isolation: Gradient (electrons), Tight_FixedRad (muons)	Multiboson	101 ± 5	42 ± 3
	$ d_0/\sigma_{d_0} < 5$ (electrons), $ d_0/\sigma_{d_0} < 3$ (muons) $ z_0 \sin \theta < 0.5$ mm	SM prediction	4610 ± 77	2546 ± 48
<i>b</i> -jets	$p_{\rm T}$ > 20 GeV and $ \eta $ < 2.5 (DL1r <i>b</i> -tagging with 85% efficiency)	Data	4610	2533
Jets	$p_{\rm T} > 25 { m GeV}$ and $ \eta < 4.5$			
Events	One electron and one muon with opposite electric charges	Sources		$\frac{\sqrt{(\Delta\mu)^2 - (\Delta\mu')^2}}{\mu} \left[\%\right]$
	No additional lepton with $p_T > 10 \text{ GeV}$, Loose isolation, Tight/Medium (electrons) and Loose (muons) identification	MC statistical uncertainty		7.7
	$m_{\rm ev} > 80 {\rm GeV}$	Top quark theoretical uncertainties		6.3
	$E_{\rm miss}^{\rm miss} > 15 {\rm GeV}$	Signal theoretical uncerta	ainties	5.8
	No <i>b</i> -iet	Jet experimental uncertai	nties	4.9
	Two or three jets	Strong W^+W^-jj theoreti	cal uncertainties	1.3
	$\zeta > 0.5$	Luminosity Misidantified lenter unos	at a later	0.8
	2	h tagging		0.5
		U-tagging	ertainties	0.4
		Others	ci tallitico	0.1

Data statistical uncertainty

Total uncertainty

Top quark normalisation uncertainty

Strong W^+W^-jj normalisation uncertainty

12.3

4.9

2.2

18.5

os-WW+jj: more post-fit plots

ssWW+jj: inclusive xSection

WZ WU: díagrams

Figure 1: Representative diagrams at LO of the WZjj-EW production in pp collisions.

Figure 2: Representative diagrams at LO of the WZjj-QCD production in pp collisions.

WZ WII: more info

	SR, $N_{\rm jets} = 2$	SR, $N_{\rm jets} \ge 3$	<i>b</i> -CR	ZZ-CR
Data	169	477	666	210
Total pred.	$231 \pm \ 12$	550 ± 50	660 ± 40	$205 \qquad \pm \ 11$
WZjj-EW	65.0 ± 3.5	60 ± 6	4.82 ± 0.28	0.725 ± 0.014
WZjj-QCD	125 ± 9	380 ± 50	77 ± 18	6.2 ± 0.7
WZjj-INT	1.3 ± 0.6	5.3 ± 2.6	0.58 ± 0.29	0.22 ± 0.11
$t\bar{t}+V$	0.66 ± 0.04	20.2 ± 0.7	289 ± 10	9.89 ± 0.28
tZj	8.78 ± 0.34	19.7 ± 1.2	134 ± 4	0.432 ± 0.005
ZZ-QCD	9.6 ± 0.4	32.0 ± 2.5	10.1 ± 0.6	159 ± 9
$ZZ ext{-}\mathrm{EW}$	2.2 ± 0.6	4.4 ± 1.1	0.25 ± 0.06	23 ± 6
VVV	0.41 ± 0.10	2.0 ± 0.5	0.39 ± 0.10	4.1 ± 1.1
Misid. leptons	18 ± 4	28 ± 7	150 ± 40	1.7 ± 0.5

WZ WU: other post-fits

WZ WII: mjj bins cross sections

WZ WII: more differential plots

WZ WIL: other EFT plots

	Expected	Observed		Expected	Observed
	$[\text{TeV}^{-4}]$	$[{\rm TeV}^{-4}]$		$[\text{TeV}^{-4}]$	$[{\rm TeV}^{-4}]$
$f_{ m T0}/\Lambda^4$	[-0.80, 0.80]	[-0.57, 0.56]	$f_{ m T0}/\Lambda^4$	[-7.0, 7.0]	[-1.5, 1.6]
$f_{ m T1}/\Lambda^4$	[-0.52, 0.49]	[-0.39, 0.35]	$f_{ m T1}/\Lambda^4$	$[-1.1, \ 1.0]$	[-0.7, 0.6]
$f_{\mathrm{T2}}/\Lambda^4$	[-1.6, 1.4]	[-1.2, 1.0]	$f_{\mathrm{T2}}/\Lambda^4$	[-12, 6]	[-2.4, 1.8]
$f_{ m M0}/\Lambda^4$	[-8.3, 8.3]	[-5.8, 5.6]	$f_{ m M0}/\Lambda^4$	[-60, 60]	[-12, 12]
$f_{ m M1}/\Lambda^4$	[-12.3, 12.2]	[-8.6, 8.5]	$f_{ m M1}/\Lambda^4$	[-32, 32]	[-15, 15]
$f_{ m M7}/\Lambda^4$	[-16.2, 16.2]	[-11.3, 11.3]	$f_{ m M7}/\Lambda^4$	[-30, 30]	[-15, 15]
$f_{ m S02}/\Lambda^4$	[-14.2, 14.2]	[-10.4, 10.4]	$f_{ m S02}/\Lambda^4$	[-41, 41]	[-18, 18]
$f_{ m S1}/\Lambda^4$	[-42, 41]	[-30, 30]	$f_{ m S1}/\Lambda^4$		

Deep Inelastic Scattering 2024

40

