Precision measurements of W and Z boson production in ATLAS

Andres Pinto on behalf of the ATLAS Collaboration DIS2024 April 9th, 2024

W and Z boson physics at LHC

- W and Z boson production is extremely important to probe the SM Electroweak sector and to check the consistency of the Standard Model (SM).
 - W/Z mass, weak mixing angle, lepton universality, etc.
- It allows to probe (non) perturbative QCD predictions.
- These measurements provide inputs and sensitivity to Parton Distribution Functions (PDFs).
- It allows to set precise limits in physics Beyond the Standard Model (BSM).

Topics for this talk

I. Measurement of m_W and Γ_W at 7TeV <u>arXiv:2403.15085</u>

- 2. Z Invisible Width Measurement: <u>arXiv:2312.02789</u>
- 3. Search for the exclusive hadronic W boson decays: arXiv:2309.15887
- 4. p_T^W and p_T^Z at 5 and 13 TeV with low pile-up data: <u>ANA-STDM-</u> <u>2018-17</u>
- **NEW** 5. W/Z cross section at 13.6 TeV with Run3 data <u>arXiv:2403.12902</u>

Measurement of m_W and Γ_W at 7TeV $m_W^2 \left(1 - \frac{m_W^2}{m_Z^2}\right) = \frac{\pi \alpha}{\sqrt{2}G_{\mu}} (1 + \Delta r)$

- Precise m_W measurement allows to probe SM consistency and BSM through loop corrections.
- Measurement performed with two observables p_T^{ℓ} and m_T in $W \rightarrow e\nu, \mu\nu$ channels
- Fitting strategy by profile likelihood fit!

4

- Several tests with different PDFs \rightarrow baseline CT18
- <u>Results improved respect to previous result EPJC 78 (2018) 10</u>

Combined m_W [MeV]

 80363.6 ± 15.9

 80366.5 ± 15.9

 80357.2 ± 15.6

 80366.2 ± 15.8

 80359.3 ± 14.6

 80367.6 ± 16.6

 80349.6 ± 15.3

 80345.6 ± 14.9

Measurement of m_W and Γ_W at 7TeV

- Uncertainty decomposition largely study and improvement in **PDFs** and **QCD**.
- m_W central value shifted by ~4 MeV, close to SM prediction

 $m_W = 80366.5 \pm 9.8(\text{stat}) \pm 12.5(\text{syst})\text{MeV}$

 $m_W = 80366.5 \pm 15.9 \text{MeV}$

• <u>Result is consistent with the expectation from fits to</u> <u>electroweak precision data</u>.

PDF unc. reduced from 9.2 to 5.7!

5

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	u_{T}	Lumi	Γ_W	PS
p_{T}^{ℓ}	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1	1.5
m_{T}	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5	0.2	7.0
Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3	0.1	2.3

PS + A_i unc. reduced from 8.3 to ~4.4!

Measurement of Γ_W at 7TeV

- First Γ_W measurement in ATLAS!
- Same strategy as $m_W \rightarrow$ Profile likelihood fit with an extensive study in uncertainty decomposition
- Several tests with different PDFs \rightarrow baseline CT18

 $\Gamma_W = 2202 \pm 32(\text{stat}) \pm 34(\text{syst})\text{MeV} = 2202 \pm 47 \text{ MeV}$

• <u>Result is consistent with the expectation from fits to electroweak precision data.</u>

Z Invisible Width Measurement

- $\frac{\Gamma(Z \rightarrow inv)}{\Gamma(Z \rightarrow \ell \ell)} = \hat{R}^{\text{miss}} = \frac{\frac{q}{q}}{\frac{q}{recorrector}}$
- The invisible width of the Z boson, $\Gamma(Z \rightarrow inv)$ reflects the number of light neutrinos and potential SM contributions.
- Measured by using missing transverse energy E_T^{miss} +jets & $Z \rightarrow \ell \ell$ + jets to construct R^{miss} with data 2015/2016 \rightarrow Measure $R_{\ell\ell}$ for leptons \rightarrow Good data to MC agreement
- $\Gamma(Z \to inv), \Gamma(Z \to \ell \ell)$ are corrected for detector effects by bin-wise correction factors to adjust for the detector's efficiency, acceptance, and the impact of systematic uncertainties.
- Background estimated by data-driven: $W(\rightarrow l\nu)$ + JETS Background , Non-collision (Beam-induced-background) , QCD multijet , Lepton fakes.

Z Invisible Width Measurement

- $R_{\ell\ell}^{miss}$ obtained using $Z \to ee$ and $Z \to \mu\mu$
- Theoretical uncertainties (QCD scales, PDFs, strong coupling constant α_s)
- R^{miss} obtained by χ^2 minimization with correlated systematics.
- ATLAS combined result more precise than LEP combination:
- $\Gamma(Z \rightarrow \text{inv}) = 506 \pm 2 \text{ (stat.)} \pm 12 \text{ (syst.) MeV}$

Systematic Uncertainty	Impact on $\Gamma(Z \rightarrow inv)$	in [MeV]	in [%]
Muon efficiency		7.4	1.5
Renormalisation & factori	sation scales	5.9	1.2
Electron efficiency		4.9	1.0
Detector correction		4.4	0.9
QCD multijet		3.2	0.6
$E_{\mathrm{T}}^{\mathrm{miss}}$		2.4	0.5
$Z(\rightarrow \mu\mu)$ +jets misid. lept	on estimate	1.9	0.4
Jet energy resolution		1.6	0.3
$W(\rightarrow \ell \nu)$ +jets normalisati	on	1.5	0.3
Pile-up reweighting		1.5	0.3
Non-collision background	estimate	1.3	0.3
Jet energy scale		1.3	0.3
γ^* -correction		1.0	0.2
$Z(\rightarrow ee)$ +jets misid. lepto	on estimate	1.0	0.2
Luminosity		1.0	0.2
Parton distribution functio	$ns + \alpha_s$	0.7	0.1
$\Gamma(Z \rightarrow \ell \ell) [5, 9]$		0.5	0.1
Tau energy scale		0.4	0.1
Muon momentum scale		0.3	0.1
$W(\rightarrow \ell \nu)$ +jets misid. lept	on estimate	0.3	0.1
(Forward) jet vertex taggin	ıg	0.2	< 0.1
Top subtraction scheme		0.2	< 0.1
Electron energy scale		0.1	< 0.1
Systematic		12	2.4
Statistical		2	0.4
Total		13	2.5

The result is dominated by systematic uncertainties, lepton efficiencies with the largest values.

Search for the exclusive hadronic W boson decays

- First search at ATLAS for $W^{\pm} \rightarrow \pi^{\pm} \gamma$
- <u>First search ever</u> for $W^{\pm} \rightarrow \rho^{\pm} \gamma$ and $W^{\pm} \rightarrow K^{\pm} \gamma$
- Two final states of interest:
 - track + photon: Sensitive to $W^{\pm} \rightarrow \pi^{\pm}/K^{\pm}/\rho^{\pm} + \gamma$ decays
 - tau + photon: Sensitive to $W^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^{\pm} \pi^{0}) \gamma$ decay
- Dedicated triggers for each final state.

• This can offer novel precision studies of QCD factorization <u>JHEP 1504 (2015) 101</u>, possible BSM windows.

- Backgrounds (B): Multijet (data-driven) and Z→ee (MC)
- signal (S) modeled by Voigt functions
- Each channel is fitted by a S+B Maximum binned likelihood in the invariant mass distribution
- Final result by a combined fit! (no significant excess found)

	95% CL upper limits									
Branching fraction	Expected $\times 10^{-6}$	Observed $\times 10^{-6}$								
$\mathcal{B}(W^{\pm} \to \pi^{\pm} \gamma)$	$1.2_{-0.3}^{+0.5}$	1.9								
$\mathcal{B}(W^{\pm} \to K^{\pm}\gamma)$	$1.1\substack{+0.4 \\ -0.3}$	1.7								
$\mathcal{B}(W^{\pm} \to \rho^{\pm} \gamma)$	$6.0^{+2.3}_{-1.7}$	5.2								

p_T^W and p_T^Z at 5 and 13 TeV with low pile-up data

- W and Z p_T spectra sensitive to pQCD and non-perturbative effects \rightarrow Important for m_W
- In the m_W measurement, the lepton p_T spectrum requires a modelling of $p_T^W < \sim 1\%$ in the low p_T^W values where the fixed-order perturbative prediction fails.
- Direct measurement of p_T^W , instead of modelling p_T^W based on measured p_T^Z , avoids the uncertainty due to the extrapolation.

- Work done with low pile-up data for good hadronic recoil resolution
- Backgrounds:
 - EW (MC): Single/Diboson,
 - top
 - QCD multijet by data-driven

p_T^W and p_T^Z at 5 and 13 TeV with low pile-up data

• Detector effects are corrected by Iterative Bayesian Unfolding.

11

- p_T distributions are measured for W^{\pm}, W^{+}, W^{-}, Z and ratios $W^{+}/W^{-}, W/Z$.
- Differential cross section and ratios results are compared to MC and pQCD predictions
- Large differences between MCs, good description from resummed predictions (NNLO+NNLL)
- This measurement is a further validation of AZ tune, developed in the m_W 7 TeV determination.

W/Z cross section at 13.6 TeV with 2022 Run 3 data

Data / Pred.

• Motivation:

12

- First $t\bar{t}$ /W ratio measurement
- Test SM prediction at $\sqrt{s} = 13.6$ TeV (unprecedent)
- Validation of detector performance and software
- Measurements:
 - Inclusive fiducial/total σ^W , σ^Z
 - Ratios: $\sigma^{W^+}/\sigma^{W^-}, \sigma^{W^{\pm}}/\sigma^Z$ and $\sigma^{t\bar{t}}/\sigma^{W^{\pm}}$
- Leptonic final states used for reconstruction and signal identification
- Background:
 - Electroweak and top (MC), Multijet (Data-driven)
- Cross section obtained from Profile likelihood fit

W/Z cross section at 13.6 TeV with 2022 Run 3 data

- tt
 tt
 /W cross section ratio is slightly lower than -PDF4LHC21 prediction, but consistent with Run 3 tt
 /Z results PLB 848 (2024) 138376
- Good agreement is observed between measured results and theoretical predictions for W/Z results

Conclusions and prospects

- The current large statistics and excellent detector performance of LHC allowed to ATLAS to made significant contributions in the precision measurements of W/Z boson production.
- New statistical and numerical techniques are improving the current measurements such as m_W , W/Z cross-section, etc. and they will allow to test extensively the SM and physics BSM.
- All the presented results are improving and extending the knowledge we have in modeling for the simulations.

Thanks for your attention!

Backup and extra material

Measurement of m_W and Γ_W at 7 TeV

• PLH fit results for m_W and combination

μ

u

$\mathcal{L}\left(\vec{n} \mu, \vec{\theta}\right) =$	Π	Π	Poisson	$\left(n_{ji} \nu_{ji}(\mu,\vec{\theta})\right)$	· Gauss	$\left(\vec{\theta} \right)$
	j	i		```		. ,

	ATLAS		
	√s = 7 TeV, 4.6/4	4.1 fb ⁻¹ , e -/ μ -channel, single- a	nd multi-fits
		m _T , total unc.	m _w unc.
μ, η <0.8, q=–1			80364 ⁺⁶³ -61
μ, η <0.8, q=+1			80376 +59 -57
.8< η <1.4, q=−1		- <u></u>	80408 +59 -58
.8< η <1.4, q=+1			80373 +52 -50
.4< η <2.0, q=−1	1		80342 +59 -60
.4< η <2.0, q=+1			80439 ⁺⁶⁰ -61
.0<η <2.4, q=−1			80319 ⁺¹³³ -134
.0< η <2.4, q=+1			80346 +128 -127
<i>e</i> , η <0.6, q=−1		/////	→ 80463 ⁺⁶⁷ ₋₆₅
<i>e</i> , η <0.6, q=+1			80362 +61 -59
.6< η <1.2, q=−1			80312 ⁺⁵⁹ -58
.6<η <1.2, q=+1		- <u>//////</u>	80407 +56 -54
.8< η <2.4, q=−1			80401 ⁺⁷³ -78
.8< η <2.4, q=+1			80388 +61 -61
Combination			80395 ⁺²⁴
	80200	80400	80600
			m [Mo]/]

$$\begin{aligned} v_{ji}(\mu, \vec{\theta}) &= \Phi \times \left[S_{ji}^{\text{nom}} + \mu \times \left(S_{ji}^{\mu} - S_{ji}^{\text{nom}} \right) \right] + \sum_{s} \theta_{s} \times \left(S_{ji}^{s} - S_{ji}^{\text{nom}} \right) \\ &+ B_{ji}^{\text{nom}} + \sum_{b} \theta_{b} \times \left(B_{ji}^{b} - B_{ji}^{\text{nom}} \right), \end{aligned}$$

1/1/1						
	80346 ⁺¹²⁸ 80463 ⁺⁶⁷ 	PDF set	Correlation	weight $(p_{\rm T}^{\ell})$	weight $(m_{\rm T})$	Combined m_W [MeV]
	80362 ⁺⁶¹ -59	CT14	52.2%	88%	12%	80363.6 ± 15.9
	80312 ⁺⁵⁹ -58	CT18	50.4%	86%	14%	80366.5 ± 15.9
	80407 +56 -54	CT18A	53.4%	88%	12%	80357.2 ± 15.6
	80401 ⁺⁷³ 78	MMHT2014	56.0%	88%	12%	80366.2 ± 15.8
	80388 -61	MSHT20	57.6%	97%	3%	80359.3 ± 14.6
	80395 224	ATLASpdf21	42.8%	87%	13%	80367.6 ± 16.6
80400	80600	NNPDF3.1	56.8%	89%	11%	80349.6 ± 15.3
	m _w [MeV]	NNPDF4.0	59.5%	90%	10%	80345.6 ± 14.9

Measurement of m_W and Γ_W at 7TeV

• Uncertainty decomposition, combination for the Width and PLH fit results in different channels

	ATLAS					ATLAS																
	$\sqrt{s} = 7 \text{ TeV}, 4.6/4.1 \text{ fb}^{-1}, 6$	e-/µ-channel, single- a	nd multi-fits			√s=7 TeV, 4.6/4.1	I fb ⁻¹ , <i>e</i> -/µ-channel, single-	and multi-fits														
		$\rightarrow p_T^r$, total unc.	Γ_W	unc.			m _T , total unc.	Γ_W unc.														
μ, η <0.8, q=–1			2133	+102 -107	μ, η <0.8, q=–1		<i>\}</i>	2110 ⁺¹²¹														
μ, η <0.8, q=+1		-	2216	+97 -103	μ, η <0.8, q=+1	-		2220 ⁺¹¹⁰ -110			~ ~				<u> </u>							
μ, 0.8< η <1.4, q=–1			2002	+108 -114	μ, 0.8< η <1.4, q=–1	4	<u></u>	2255 ⁺¹⁴⁵ -145	Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	u_{T}	Lumi	m_W	PS
μ, 0.8< η <1.4, q=+1			2215	+96 -102	μ, 0.8< η <1.4, q=+1			2199 ⁺¹¹⁶	p_{T}^{ℓ}	72	27	66	21	14	10	5	13	12	12	10	6	55
μ, 1.4< η <2.0, q=–1	·		2111	+115 -120	μ, 1.4< η <2.0, q=−1		<u> </u>	2111 ⁺¹⁵⁹ -159	m_{T}	48	36	32	5	7	10	3	13	9	18	9	6	12
μ, 1.4< η <2.0, q=+1	-////		2188	+97 -102	μ, 1.4< η <2.0, q=+1			2038 ⁺¹²⁵ -124	Combined	47	32	34	7	8	9	3	13	9	17	9	6	18
μ, 2.0< η <2.4, q=–1		·	→ 2607	+189 -189	μ, 2.0< η <2.4, q=−1		×	→ 2469 ⁺²⁹⁰ -291														
μ, 2.0< η <2.4, q=+1			2337	+155 -157	μ, 2.0< η <2.4, q=+1		·	2268 +223 -220	PDF set		orrela	tion	weigh	nt (<i>m</i>	т) we	eight (p_{π}^{ℓ}	Co	mbi	ned Fu	v [M e	eV 1
<i>e</i> , ∣η <0.6, q=−1	·····		2115	+111 -116	<i>e</i> , η <0.6, q=−1			2305 ⁺¹³² -131							17	-8 ()	r T				. [
<i>e</i> , η <0.6, q=+1	<u>-474</u>	-	2229	+106 -111	<i>e</i> , η <0.6, q=+1		// _	2208 ±118	CT14		50.39	70	88	3%		12%			2	$204 \pm$	47	
<i>e</i> , 0.6< η <1.2, q=−1			2128	+126 -130	<i>e</i> , 0.6< η <1.2, q=−1			1951 ⁺¹⁴⁵ -145	CT18		51.59	70	87	7%		13%			2	$202 \pm$	47	
<i>e</i> , 0.6< η <1.2, q=+1			2188	+114 -118	<i>e</i> , 0.6<∣η <1.2, q=+1	4		2245 ⁺¹²³ -122	CT18A		50.09	70	86	5%		14%			2	184 ±	47	
<i>e</i> , 1.8< η <2.4, q=−1			2285	+166 -167	<i>e</i> , 1.8<∣η <2.4, q=−1		//	2202 ⁺¹⁸¹ -181	MMHT201	4	50.89	70	88	3%		13%			2	182 ±	47	
<i>e</i> , 1.8< η <2.4, q=+1			2420	+135 -138	<i>e</i> , 1.8< η <2.4, q=+1			2146 +135 -134	MSHT20		53.69	70	89	9%		11%			2	181 ±	47	
Combination			2221	+68 -76	Combination			2200 ⁺⁴⁷ -48	ATLASpdf	21	49.59	70	84	1%		16%			2	193 ±	46	
	2000	2500	300	0		2000	2500	3000	NNPDF31		49.99	70	86	5%		14%			2	182 ±	46	
			Г _w [М	eV]				Г _w [MeV]	NNPDF40		51.49	70	85	5%		15%			2	184 ±	46	

p_T^W and p_T^Z at 5 and 13 TeV with low- μ data

• Ratio of cross sections benefit from uncertainties cancellation and data to model agreement within the errors.

W/Z cross section at 13.6 TeV with 2022 Run 3 data

- Fitting strategy: Profile likelihood fit
- For Z cross sections $(Z \to ee/\mu\mu \text{ and } Z \to \ell\ell)$: *ee* and $\mu\mu$ regions are used for fit
- For W cross sections, W+ /W- and W± /Z ratios: *ee*, $\mu\mu$ and 4 single lepton regions are used as input (combined fit with Z regions)
- For $t\bar{t}$ /W cross section ratios: 2 $e\mu$ regions (from $t\bar{t}$ analysis), 4 single lepton regions, ee and $\mu\mu$ regions are used

$$L(\vec{n}; \mu_s, \vec{\theta}) = \prod_{c \in \text{channels}} \text{Pois}(n_{\text{data}} | \mu_{s,c} S_c(\vec{\theta}) + B_c(\vec{\theta})) \prod_{i \in \text{NPs}} G(\theta_i)$$

Ratio of measured over predicted cross-section

W/Z cross section at 13.6 TeV with 2022 Run3 data $\frac{Category}{Luminosity}$ $\frac{\sigma(Z \to ee)}{2.2}$ $\sigma(Z \to ee)$ $\sigma($

- Impact of uncertainties:
- Dominant uncertainty sources in each channel:
- Z cross sections: luminosity and lepton
- W cross sections: luminosity, jet and multi-jet background
- W+ /W- : multi-jet, W± /Z: jet and multi-jet background
- ttbar/W: ttbar modelling, background modelling, jet, multi-jet background

Category	$\sigma(Z \rightarrow ee)$	$\sigma(Z \rightarrow \mu \mu)$	$\sigma(Z -$	$\sigma(Z \to \ell \ell) \mid \sigma(W$		$\rightarrow e^- \bar{v}$)	$\sigma(W^+ \to e^+ \nu)$		$\sigma(W^{-}$ -	$\rightarrow \mu^- \bar{\nu}$)	$\sigma(W^+ \to \mu^+ \nu)$
Luminosity	2.2	2.2	2.1	2.2		2.5		2.5	2.	.5	2.4
Pile-up	1.2	0.3	0.3	8	1.1		1.1		0.	.3	0.4
MC statistics	< 0.2	< 0.2	< 0	.2	<	: 0.2		0.4	< (0.2	0.4
Lepton trigger	0.2	0.4	0.1	2		1.2		1.3	1.	0	1.0
Electron reconstruction	1.4	_	0.9	9		0.7		0.8	-	-	-
Muon reconstruction	_	2.1	1.4	4		-		-	1.	0	1.0
Multi-jet	_	_	_			2.9		2.4	1.	3	1.1
Other background modelling	< 0.2	< 0.2	< 0	.2	<	0.2		< 0.2	0.	.5	0.4
Jet energy scale	_	_	-			1.4		1.4	1.	.3	1.4
Jet energy resolution	_	_			<	0.2		0.3	0.	2	0.2
NNJVT	_	_	_			1.6		1.5	1.	.3	1.3
$E_{\rm T}^{\rm miss}$ track soft term	_	_			<	0.2		0.4	< (0.2	< 0.2
PDF	0.2	0.2	< 0	.2		0.8		0.8	0.	.6	0.5
QCD scale (ME and PS)	0.6	< 0.2	0.1	3		1.3		1.2	0.	.6	0.6
Flavour tagging	_	_	-			-		-	-	-	-
$t\bar{t}$ modelling	_	_	_	-		-		-	-	-	-
Total systematic impact [%]	3.0	3.1	2.	2.7		5.0		4.5	3.8		3.6
Statistical impact [%]	0.04	0.03	0.0	0.02		0.02		0.01	0.01		0.01
Cat	Category		$\bar{v}) \sigma$	$(W^{+} -$	$\rightarrow \ell^+ \nu)$	$\sigma(W^{\pm} \rightarrow$	<i>→ ℓv</i>)	$R_{W^{+}/W^{-}}$	$R_{W^{\pm}/Z}$	$R_{t\bar{t}/W^{\pm}}$	-
Luminosity		2.5		2.4		2.4		< 0.2	0.3	< 0.2	-
Pil	Pile-up		0.7		7	0.6		< 0.2	< 0.2	< 0.2	
MC statistics		< 0.2		0.2		2 < 0.2		2 < 0.2		< 0.2	
Lepton trigger		1.0		0.9		0.9) < 0.2		0.7	0.8	
Electron re	Electron reconstruction			0.5		0.4		< 0.2	0.5	0.4	
Muon reconstruction		0.6		0.6		0.6		0.2	0.8	0.6	
Multi-jet		1.2		1.2	2	1.2		1.6	1.1	1.0	
Other background modelling		g 0.4		0.4	1	0.4		< 0.2	0.3	0.9	
Jet ene	Jet energy scale			1.3	3	1.3		< 0.2	1.3	1.3	
Jet energy resolution		< 0.2		0.2	2	< 0.2	2	< 0.2	< 0.2	< 0.2	
NNJVT		1.4		1.3	3	1.3		< 0.2	1.3	< 0.2	
$E_{\rm T}^{\rm miss}$ track soft term		< 0.2		0.3	3	0.3		< 0.2	0.3	0.3	
PDF		0.5		0.5	5	0.3		0.5	0.2	0.4	
QCD scale (ME and PS)		0.8		0.7	7	0.6		< 0.2	0.7	0.7	
QCD scale				-						. 0.0	
QCD scale Flavou	r tagging	-		-		-		-	-	< 0.2	
QCD scale Flavou 	r tagging odelling			_				_	_	< 0.2 1.1	_
QCD scale Flavou <i>tī</i> mo Total systema	r tagging odelling atic impact [%]	3.7		3.5	5			_ 	- 2.4	< 0.2 1.1 2.5	-