Measurements of Higgs boson cross-sections and their interpretation with the ATLAS experiment

Benedict Winter, University of Freiburg, on behalf of the ATLAS Collaboration

DIS 2024 conference Grenoble, 09.04.2024

universität freiburg

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

The Higgs boson

Emerges from electroweak symmetry breaking, which makes Standard Model gauge invariant despite *W* and *Z* masses $\varphi = \frac{1}{2} F F^{\mu\nu}$

Couplings

- to W and Z bosons and self-coupling dictated by symmetry breaking
 - \rightarrow see <u>Shahzad Ali's talk</u> for self coupling
- to fermions introduced ad-hoc to generate their masses
 →more on couplings to fermions and rare decays by Louis-Guillaume Gagnon
- to massless particles vanish

Couplings to Standard Model particles

$c_F \frac{m_F}{\text{vev}}$ or $\sqrt{\kappa_V} \frac{m_V}{\text{vev}}$ ATLAS Run 2 Data (Total uncertainty) Syst. uncertainty ATLAS Run 2 SM prediction p-value 56% p-value 65% is a free parameter 10 tΗ × H ttH 10^{-2} Leptons v_e V_{i} ggF+bbH 10-3 Hiaas boso VBF 6 10 κ_F or κ_V -WH HEEH 1.2 H ΖH 2 2 2 3 2 2 3 3 0 0 0 0.8 77 YY μμ bb WW ττ 10^{-1} 10 10^{2} 1 Particle mass [GeV] $\sigma \times B$ normalized to SM prediction

Combination of inclusive results consistent with Standard Model

- (cross-section x branching ratio) per (production process x decay mode)
- couplings to Standard Model particles assuming
 - absence of BSM decays
 - loop processes have Standard Model structure

Nature 607 (2022) 52-59

Couplings to Standard Model particles

Nature 607 (2022) 52-59

Combination of inclusive results consistent with Standard Model

- (cross-section x branching ratio) per (production process x decay mode)
- couplings to Standard Model particles assuming
 - absence of BSM decays
 - loop processes have Standard Model structure

Couplings to W and Z

Search for *WH* production via VBF with $H \rightarrow bb$

- observed upper limit: 9.0 times Standard Model (8.7 expected)
- *HWW* and *HZZ* couplings **have same sign**. Otherwise process observable due to constructive interference

Feb 2024 arXiv:2402.00426

Opposite signs possible if Higgs part of multiplet larger than doublet (e.g. Georgi–Machacek model)

H→WW*→ℓvℓv

- sizable branching ratio, rich phenomenology in 2-stage decay
- no full reconstruction, complex and diverse backgrounds

ggF and VBF: fiducial/differential, in-likelihood unfolding to particle level for various observables strong evidence (4.6 σ) for *VH* with *H*→*WW**

Effective field theory interpretation for VBF Apr 2023 Phys. Rev. D 108 (2023) 072003

- one SMEFT dimension-6 operator c_i floating at a time, use Warsaw basis
- sensitivity to *CP*-odd operators \tilde{c}_{i} thanks to $\Delta \phi_{ii}$
- limits given for linear terms $\sim c_i / \Lambda^2$ only and linear + quadratic terms $\sim c_i^2 / \Lambda^4$

$H \rightarrow yy$ and $H \rightarrow ZZ^*$ differential

- fully reconstructed final states; small branching ratio
- $H \rightarrow ZZ^*$: small background, rich phenomenology in 2-stage decay
- $H \rightarrow \gamma \gamma$: background sizable but estimated precisely from sidebands

Interpretations

EFT interpretation for $H \rightarrow \gamma \gamma$

- one c_i floating at a time
- use p_T^H , N_{jets} , m_{jj} , $\Delta \phi_{jj}$, p_T^{j1} distributions simultaneously

Constrain *bbH* and *ccH* Yukawa couplings from combined p_T^H spectrum

 direct constraint: |κ_c| < 8.5 (95% CL) Eur. Phys. J. C 82 (2022) 717

VH production with $p_T^H > 250 \text{ GeV}$

Final state with large *R* jets from **boosted** $V \rightarrow qq$ and $H \rightarrow bb$

• $H \rightarrow bb$ tagging via neural network

Dec 2023 arXiv:2312.07605

• cut-based $V \rightarrow qq$ tagging

Multijet and $V \rightarrow qq$ +jets backgrounds estimated from data, others from MC

Fit m_J^H spectrum in three SRs and CRs

Inclusive cross-section: 3.1 ± 1.3 (stat.) $^{+1.8}_{-1.4}$ (syst.) pb

Significance: 1.7σ obs. $(1.2\sigma \text{ exp.})^{=}$

Kinematic region	Observed μ	Observed σ [fb]	Expected σ [fb]
$250 \le p_{\rm T}^H < 450 { m ~GeV}, y_H < 2$	$0.8^{+2.2}_{-1.9}$	47^{+125}_{-109}	57.0
$450 \le p_{\rm T}^H < 650 { m ~GeV}, y_H < 2$	$0.4^{+1.7}_{-1.5}$	2^{+10}_{-9}	5.9
$p_{\rm T}^H \geq 650~{\rm GeV}, y_H < 2$	$5.3^{+11.3}_{-3.2}$	$6^{+13}_{-4} \ (<\!43)$	1.2
			10

Simplified Template Cross Sections (STXS) Nature 607 (2022) 52-59

- Categorize Higgs production via key observables for each production mode
- Same scheme for all decay channels and ATLAS/CMS, so can combine
 - here: 2022 ATLAS combination, mostly based on full Run 2 results

Interpretations

Feb 2024 arXiv:2402.05742

for 2HDM and MSSM

- **EFT:** some c_i have similar effect
- measurable parameters c_i' found via eigenvalue decomposition and constrained simultaneously

Outlook: Run 3 and HL-LHC

Eur. Phys. J. C 84 (2024) 78

- BSM sensitivity often enhanced in extreme phase space
- higher dimensional BSM constraints (e.g. EFT) and differential measurements
- **further highlights**: *CP* (\rightarrow Simen Hellesund), width (\rightarrow Leonardo Carminati), self-coupling, $H \rightarrow cc$, $H \rightarrow \mu\mu$, $H \rightarrow Z\gamma$, $H \rightarrow$ invisible

Backup: contributions to STXS EFT interpretation

analyses used; for references see

Nature 607 (2022) 52-59

Decay mode	Targeted production processes	\mathcal{L} [fb ⁻¹]	Ref.	Fits deployed in
$H \rightarrow \gamma \gamma$	ggF, VBF, WH , ZH , $t\bar{t}H$, tH	139	[31]	All
$H \rightarrow ZZ$	ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	139	[28]	All
	$t\bar{t}H + tH$ (multilepton)	36.1	[39]	All but fit of kinematics
$H \rightarrow WW$	ggF, VBF	139	[29]	All
	WH, ZH	36.1	[30]	All but fit of kinematics
	$t\bar{t}H + tH$ (multilepton)	36.1	[39]	All but fit of kinematics
$H \rightarrow Z\gamma$	inclusive	139	[32]	All but fit of kinematics
$H \rightarrow b \bar{b}$	WH, ZH	139	[33, 34]	All
	VBF	126	[35]	All
	$t\overline{t}H + tH$	139	[36]	All
	inclusive	139	[37]	Only for fit of kinematics
$H \rightarrow \tau \tau$	ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	139	[38]	All
	$t\bar{t}H + tH$ (multilepton)	36.1	[39]	All but fit of kinematics
$H ightarrow \mu \mu$	$\mathrm{ggF} + t\bar{t}H + tH, \mathrm{VBF} + WH + ZH$	139	[<mark>40</mark>]	All but fit of kinematics
$H \to c \bar{c}$	WH + ZH	139	[41]	Only for free-floating κ_c
$H \rightarrow \text{invisible}$	VBF	139	[42]	κ models with $B_{\rm u}$ & $B_{\rm inv}$.
	ZH	139	[43]	κ models with $B_{\rm u.} \& B_{\rm inv.}$

Rotated Wilson coefficients for STXS interpretation

ATLAS $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

