

Towards NNPDFpol2.0

Felix Hekhorn

31st International Workshop on Deep Inelastic Scattering and Related Subjects (DIS2024)

Overview

1. FONLL for polarised DIS [EPJC84.189]

2. Towards NNPDFpol2.0

3. Summary

FONLL for polarised DIS [EPJC84.189]

How to treat charm in polarised PDFs? [EPJC84.189]

FH, Magni, Nocera, Rabemananjara, Rojo, Schaus & Stegeman

Treatment of heavy quarks in present polPDFs: ZM-VFNS $\Rightarrow m_c = \infty$ or $m_c = 0$ With FONLL we account for charm mass effects [NPB834.116]:

$$g_1^{\mathrm{FONLL}} = g_1^{\mathrm{FFNS3c}} + g_1^{\mathrm{FFNS4}} - g_1^{\mathrm{double-counting}}$$

where

g^{FFNS3c} retains all mass effects at a finite order ⇒ Q² ≈ m_c² √
g^{FFNS4} resums all collinear logs, but has no power-like terms ⇒ Q² ≫ m_c² √
g^{double-counting} is the overlap between FFNS3c and FFNS4

The pineline framework [CPC297.109061]

https://nnpdf.github.io/pineline

- \leftarrow NNLO splitting functions \checkmark
- \leftarrow NNLO matching conditions \checkmark
- \rightarrow NNLO massless coefficient functions \checkmark
- \rightarrow NNLO massive coefficient functions \checkmark

Structure functions

4

Predictions for single spin asymetries at EIC and EicC

Anderle, Dong, FH et al. & Anderle, Guo, FH et al.

← EIC [PRD104.114039]

EicC [PRD109.034021] →

5

Towards NNPDFpol2.0

NNPDFpol2.0 - PRELIMINARY

- ▶ we can already do a DIS-only PDF fit $\rightarrow \Delta g, \Delta S, \Delta T_3, \Delta T_8$
- use NNPDF4.0 technology [EPJC82.428][EPJC81.958]
- use pineline technology [CPC297.109061]
- impose positivity $|\Delta f| < f$ at 5 GeV² [2308.00025]
- impose sum rules for ΔT_3 and ΔT_8 (baryon decays)
- impose finite first moment for Δg and ΔS at $1 \, \text{GeV}^2$

PRELIMINARY!

Data - PRELIMINARY

g₁ COMPASS, SLAC,HERMES, JLab, SMCA₁ SLAC, JLab, SMC

$$W^2 \ge 4 \,\mathrm{GeV}^2$$

 $Q^2 \ge 1 \,\mathrm{GeV}^2$

NLO vs. NNLO - PRELIMINARY

8

Comparison to others - PRELIMINARY

Summary

Summary

- we can apply the FONLL scheme for polarised PDFs
- we can work at NNLO for DIS
- measurements at the EIC will be able to resolve mass effects

TODO for NNPDFpol2.0:

- > add more data, i.e. hadronic data: W^{\pm} production, pion production, jet production
- add missing higher order uncertainty (MHOU) [2401.10319]

Summary

- we can apply the FONLL scheme for polarised PDFs
- we can work at NNLO for DIS
- measurements at the EIC will be able to resolve mass effects

TODO for NNPDFpol2.0:

- > add more data, i.e. hadronic data: W^{\pm} production, pion production, jet production
- add missing higher order uncertainty (MHOU) [2401.10319]

Danke! Thanks! Kiitos!

Backup slides

New Theory Prediction Pipeline Pineline

Produce FastKernel (FK) tables!

The workhorse in the background: PineAPPL

Spin momentum

FONLL vs. ZM-VFNS - PRELIMINARY


```
FONLL: NLO vs. NNLO
```

