Global fit of unpolarized Transverse Momentum Distributions

XXXI International Workshop on Deep Inelastic Scattering (DIS2024)

Lorenzo Rossi

INFN

Istituto Nazionale di Fisica Nucleare

MAP Collaboration

April 10th

UNIVERSITÀ DI PAVIA

TMD factorization — Drell-Yan process

Arnold, Metz and Schlegel, Phys.Rev.D 79 (2009)

1

Arnold, Metz and Schlegel, Phys.Rev.D 79 (2009)

TMD factorization — Drell-Yan process

1

 $F_{UU}^{1}(x_{A}, x_{B}, \mathbf{q}_{T}, Q) = x_{A} x_{B} \mathcal{H}^{DY}(Q; \mu) \sum_{\sigma} c_{a}(Q^{2}) \int d|\mathbf{b}_{T}| |\mathbf{b}_{T}| J_{0}(|\mathbf{q}_{T}||\mathbf{b}_{T}|) \hat{f}_{1}^{a}(x_{A}, \mathbf{b}_{T}^{2}; \mu, \zeta_{A}) \hat{f}_{1}^{b}(x_{B}, \mathbf{b}_{T}^{2}; \mu, \zeta_{B})$

 $F_{UU}^{1}(x_{A}, x_{B}, \mathbf{q}_{T}, Q) = x_{A} x_{B} \mathcal{H}^{DY}(Q; \mu) \sum_{c} c_{a}(Q^{2}) \int d|\mathbf{b}_{T}| |\mathbf{b}_{T}| J_{0}(|\mathbf{q}_{T}||\mathbf{b}_{T}|) \hat{f}_{1}^{a}(x_{A}, \mathbf{b}_{T}^{2}; \mu, \zeta_{A}) \hat{f}_{1}^{b}(x_{B}, \mathbf{b}_{T}^{2}; \mu, \zeta_{B})$

 $F_{UU}^{1}(x_{A}, x_{B}, \mathbf{q}_{T}, Q) = x_{A} x_{B} \mathcal{H}^{DY}(Q; \mu) \sum_{\sigma} c_{a}(Q^{2}) \int d|\mathbf{b}_{T}| |\mathbf{b}_{T}| J_{0}(|\mathbf{q}_{T}||\mathbf{b}_{T}|) \hat{f}_{1}^{a}(x_{A}, \mathbf{b}_{T}^{2}; \mu, \zeta_{A}) \hat{f}_{1}^{b}(x_{B}, \mathbf{b}_{T}^{2}; \mu, \zeta_{B})$

$$F_{UU}^{1}(x_{A}, x_{B}, \mathbf{q}_{T}, Q) = x_{A}x_{B}\mathcal{H}^{DY}(Q; \mu) \sum_{a} c_{a}(Q^{2})$$

W term

photon

$$F_{UU,T}(x \, . \, z; \mu_F, \mathbf{P}_{hT}^2, Q^2) = x \sum_a H_{UU,T}^a (Q^2, \mu^2) \int d^2$$

$$+Y_{UU,T}(Q^2,\mathbf{P}_{hT}^2)+\mathcal{O}(M^2)$$

$J^2 \mathbf{k}_{\perp} \mathbf{d}^2 \mathbf{P}_{\perp} f_1^{\mathbf{a}}(x, \mathbf{k}_{\perp}^2; \mu^2) D_1^{\mathbf{a} \to \mathbf{h}}(z, \mathbf{P}_{\perp}^2; \mu^2) \delta^{(2)}(z\mathbf{k}_{\perp} - \mathbf{P}_{hT} + \mathbf{P}_{\perp})$

$^{2}/Q^{2})$

W Term

$$+Y_{UU,T}(Q^2, \mathbf{P}_{hT}^2) + \mathcal{O}(M^2)$$

$^{2}/Q^{2})$

W Term

$$^{2}/Q^{2})$$

• The <u>W term</u> dominates in the region where $q_T \ll Q$

• The <u>W term</u> dominates in the region where $q_T \ll Q$

- The Y term has been excluded in the MAP analysis

$\hat{f}_1^q(x_B, \mathbf{b}_T; \mu_F, \zeta_F) = [C \otimes f_1](x_B)$

 $\times \left(\frac{\zeta}{\mu_b^2}\right)^{K(b_\star,\mu_{b_\star})/2} \left[\frac{\zeta}{Q_0}\right]$

$$B_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

Matching coeff. (perturbative calculable)

 $\hat{f}_{1}^{q}(x_{B}, \mathbf{b}_{T}; \mu_{F}, \zeta_{F}) = \mathbb{C} \otimes f_{1}](x_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{ \int_{\mu_{h}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F}) \right\}$

 $\times \left(\frac{\zeta}{\mu^2}\right)^{K(b_\star,\mu_{b_\star})/2} \left[\frac{\zeta}{O_0}\right]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x,\mathbf{b}_T;\zeta,Q_0)$

Matching coeff. (perturbative calculable)

 $\hat{f}_1^q(x_B, \mathbf{b}_T; \mu_F, \zeta_F) = [C \otimes f_1](x_B)$

 $\times \left(\frac{\zeta}{\mu_{h}^{2}}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[\frac{\zeta}{O_{0}}\right]$

Collins, "Foundations of Perturbative QCD"

Collinear PDFs (previous fit)

$${}_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$

Matching coeff. (perturbative calculable)

Matching coeff. (perturbative calculable)

Collins-Soper kernel

Matching coeff. (perturbative calculable)

Collins-Soper kernel

NP part of **Collins-Soper Kernel**

Matching coeff. (perturbative calculable)

Collins-Soper kernel

NP part of **Collins-Soper Kernel**

Matching coeff. (perturbative calculable)

Collins-Soper kernel

NP part of **Collins-Soper Kernel**

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

4

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

4

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points
- Perturbative accuracy: N³LL⁻

MAP Collaboration, JHEP 10 (2022)

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

Perturbative accuracy: N³LL⁻

Accuracy	H and C	K and γ_F	γ κ	PDFs/FFs and α_s evol.
LL	0	-	1	-
NLL	0	1	2	LO
NLL'	1	1	2	NLO
NNLL	1	2	3	NLO
NNLL'	2	2	3	NNLO
N ³ LL ⁻	2	3	4	NNLO + NLO
N ³ LL	2	3	4	NNLO
N ³ LL'	3	3	4	N ³ LO

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

Perturbative accuracy: N³LL⁻

Accuracy	H and C	K and γ_F	Ϋκ	PDFs/FFs and α_s evol.
LL	0	-	1	-
NLL	0	1	2	LO
NLL'	1	1	2	NLO
NNLL	1	2	3	NLO
NNLL'	2	2	3	NNLO
N ³ LL ⁻	2	3	4	NNLO + NLO
N ³ LL	2	3	4	NNLO
N ³ LL'	3	3	4	N ³ LO

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

• Perturbative accuracy: $N^3 LL^-$

Accuracy	H and C	K and γ_F	γκ	PDFs/FFs and α_s evol.
LL	0	_	1	_
NLL	0	1	2	LO
NLL'	1	1	2	NLO
NNLL	1	2	3	NLO
NNLL'	2	2	3	NNLO
N ³ LL ⁻	2	3	4	NNLO + NLO
N ³ LL	2	3	4	NNLO
N ³ LL'	3	3	4	N ³ LO MMHT2014
				DSS14-17 N

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points
- Perturbative accuracy: N³LL⁻

Number of fitted parameters: 21

MAP Collaboration, JHEP 10 (2022)

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points
- Perturbative accuracy: N³LL⁻

Number of fitted parameters: 21

 $f_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{k_{\perp}^2}{g_{1A}}} + \lambda_B k_{\perp}^2 e^{-\frac{k_{\perp}^2}{g_{1A}}} \right)$

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

$$\int_{1-\hat{B}}^2 + \lambda_C e^{-\frac{k_\perp^2}{g_{1C}}}$$

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points

• Perturbative accuracy:
$$N^3 LL^-$$

Number of fitted parameters: 21

$$f_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 e^{-\frac{k_\perp^2}{g_{1A}}}\right)$$

$$D_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{P_\perp^2}{g_{3A}}} + \lambda_{FB} k_\perp^2 e^{-\frac{T}{g_{3A}}} \right)$$

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points
- Perturbative accuracy: N³LL⁻

Number of fitted parameters: 21

 $f_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 e^{-\frac{k_\perp^2}{g_{1B}}} + \lambda_C e^{-\frac{k_\perp^2}{g_{1C}}} \right)$

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points
- Perturbative accuracy: N³LL⁻

Number of fitted parameters: 21

 $f_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 e^{-\frac{k_\perp^2}{g_{1A}}}\right)$

11 parameters for TMD PDF + 1 for NP evolution + 9 for TMD FF = 21 free parameters

$$\left(\frac{k_{\perp}^2}{1B} + \lambda_C e^{-\frac{k_{\perp}^2}{g_{1C}}}\right)$$

$$g_K(b_T^2) = -g_2^2 \frac{b_T^2}{4}$$

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points
- Perturbative accuracy: $N^3 LL^-$

- Number of fitted parameters: 21
- Extremely good description: $\chi^2/N_{data} = 1.06$

MAP Collaboration, JHEP 10 (2022)

7

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points
- Perturbative accuracy: N³LL⁻

- Number of fitted parameters: 21
- Extremely good description: $\chi^2/N_{data} = 1.06$

MAP Collaboration, JHEP 10 (2022)

7
- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points Same data points
- Perturbative accuracy: N³LL⁻

- Number of fitted parameters: 21
- Extremely good description: $\chi^2/N_{data} = 1.06$

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points Same data points
- Perturbative accuracy: N³LL

- Number of fitted parameters: 21
- Extremely good description: $\chi^2/N_{data} = 1.06$

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points Same data points
- Perturbative accuracy: N³LL

- Number of fitted parameters: 21
- Extremely good description: $\chi^2/N_{data} = 1.06$

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points Same data points
- Perturbative accuracy: N³LL

- Number of fitted parameters: 21
- Extremely good description: $\chi^2/N_{data} = 1.06$

NNPDF31NNLO (MonteCarlo sets) **MAPFF10NNLO**

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points Same data points
- Perturbative accuracy: N³LL

- Number of fitted parameters: 21 Same functional forms
- Extremely good description: $\chi^2/N_{data} = 1.06$

NNPDF31NNLO (MonteCarlo sets) MAPFF10NNLO

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points Same data points
- Perturbative accuracy: N³LL

- Number of fitted parameters: 21 Same functional forms
- Extremely good description: $\chi^2/N_{data} = 1.40$

NNPDF31NNLO (MonteCarlo sets) MAPFF10NNLO

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points Same data points
- Perturbative accuracy: N³LL

- Number of fitted parameters: 21 Same functional forms
- Extremely good description: $\chi^2/N_{data} = 1.40$

NNPDF31NNLO (MonteCarlo sets) **MAPFF10NNLO**

Why does the χ^2 worse?

Collinear sets

MMHT + DSS (MAP22) NNPDF + MAPFF (MAP24

	Data set χ_0^2/N_{dat}				
	DY total	SIDIS total	Total		
	1.66	0.87	1.06		
FI)	1.58	1.34	1.40		

Collinear sets

MMHT + DSS (MAP22) NNPDF + MAPFF (MAP24

	Data set χ_0^2/N_{dat}				
	DY total	SIDIS total	Total		
	1.66	0.87	1.06		
FI)	1.58	1.34	1.40		

	Data set χ_0^2/N_{dat}				
1	DY total	SIDIS total	Total		
	1.66	0.87	1.06		
FI)	1.58	1.34	1.40		

Collinear sets

MMHT + DSS (MAP22) NNPDF + MAPFF (MAP24

	Data set χ_0^2/N_{dat}				
	DY total	SIDIS total	Total		
	1.66	0.87	1.06		
FI)	1.58	1.34	1.40		

	Data set χ_0^2/N_{dat}				
	DY total	Total			
	1.66	0.87	1.06		
FI)	1.58	1.34	1.40		

	Data set χ_0^2/N_{dat}				
	DY total	Total			
	1.66	0.87	1.06		
FI)	1.58	1.34	1.40		

Increased order in the collinear FF extraction

	Data set χ_0^2/N_{dat}				
	DY total	Total			
	1.66	0.87	1.06		
FI)	1.58	1.34	1.40		

Increased order in the collinear FF extraction

New behaviours

	Data set χ_0^2/N_{dat}				
	DY total	Total			
	1.66	0.87	1.06		
FI)	1.58	1.34	1.40		

Increased order in the collinear FF extraction

New behaviours

Smaller uncertainties

And the next step? How do we solve it? **Flavour Dependence**

MAPTMD24 extraction

MAPTMD24 extraction

Flavour Dependence

We use the same functional form but with different parameters for different flavours

TMD PDFs: $u, d, \bar{u}, \bar{d}, sea$

MAPTMD24 extraction

Flavour Dependence

We use the same functional form but with different parameters for different flavours

TMD PDFs: u, d, ū, d, sea

TMD FFs: favored ($u \rightarrow \pi^+ = \overline{d} \rightarrow \pi^+$), unfavored

MAPTMD24 extraction

Flavour Dependence

We use the same functional form but with different parameters for different flavours

TMD PDFs: $u, d, \bar{u}, \bar{d}, sea$

TMD FFs: favored ($u \rightarrow \pi^+ = \overline{d} \rightarrow \pi^+$), unfavored

TMD FFs: favored $(u \rightarrow K^+)$, favored' $(\bar{s} \rightarrow K^+)$, unfavored

MAPTMD24 extraction

Flavour Dependence

We use the same functional form but with different parameters for different flavours

TMD PDFs: u, d, ū, d, sea

TMD FFs: favored $(u \to \pi^+ = \bar{d} \to \pi^+)$, unfavored TMD FFs: favored $(u \rightarrow K^+)$, favored' $(\bar{s} \rightarrow K^+)$, unfavored

MAPTMD24 extraction

Flavour Dependence

We use the same functional form but with different parameters for different flavours

		N^3	LL	
Data set	$N_{ m dat}$	χ^2_D	χ^2_λ	
DY collider total	251	1.37	0.28	1
DY fixed-target total	233	0.63	0.31	0
SIDIS total	1547	0.70	0.26	0
Total	2031	0.81	0.27	1

MAPTMD24 extraction - Results χ^2 1.08 data

		N^3	LL	
Data set	$N_{ m dat}$	χ^2_D	χ^2_λ	
DY collider total	251	1.37	0.28	1
DY fixed-target total	233	0.63	0.31	0
SIDIS total	1547	0.70	0.26	0
Total	2031	0.81	0.27	1

		N^3	LL	
Data set	$N_{ m dat}$	χ^2_D	χ^2_λ	
DY collider total	251	1.37	0.28	1
DY fixed-target total	233	0.63	0.31	0
SIDIS total	1547	0.70	0.26	0
Total	2031	0.81	0.27	1

		N^3	LL	
Data set	$N_{ m dat}$	χ^2_D	χ^2_λ	
DY collider total	251	1.37	0.28	1
DY fixed-target total	233	0.63	0.31	$\mid 0$
SIDIS total	1547	0.70	0.26	0
Total	2031	0.81	0.27	1

Very good agreement

	$N^{3}LL$			
Data set	$N_{ m dat}$	χ^2_D	χ^2_λ	
DY collider total	251	1.37	0.28	1
DY fixed-target total	233	0.63	0.31	0
SIDIS total	1547	0.70	0.26	0
Total	2031	0.81	0.27	1

Very good agreement

	$N^{3}LL$			
Data set	$N_{ m dat}$	$\mid \chi^2_D$	$\mid \chi^2_\lambda$	
DY collider total	251	1.37	0.28	1
DY fixed-target total	233	0.63	0.31	0
SIDIS total	1547_{T}	0.70	0.26	0
Total	2031	0.81	0.27	1
	Ŧ	ΤI	₹ ₹ ₹ ₹ ₹ ₹ ₹	
	I I I I I I I I I I I I I I I I I I I	ΤI		₽ ₽
Very good agreeme	• • •	ΤI		₽ ₽
Nery good agreeme		I I I I I I I I I I I I I I I I I I I I		Ţ Ţ

	$N^{3}LL$			
Data set	$N_{ m dat}$	χ^2_D	χ^2_{λ}	
DY collider total	251	1.37	0.28	1
DY fixed-target total	233	0.63	0.31	0
SIDIS total	1547	0.70	0.26	0
Total	2031	0.81	0.27	1
	⊥ I			
			•	ŦŦ
Very good agreement		Quite good a		
				Ţ

The sea is the least constrained

The sea is the least constrained

Some signals of differences between favoured and unfavoured channels

The favoured is better constrained than the unfavoured one

Some signals of differences between favoured and unfavoured channels

Strong differences between different hadron fragmentations!

19

19

Independent of our non perturbative choices

Conclusions and outlook

MAPTMD24 will be the *first flavour dependent* extraction of unpolarized quarks TMDs in the proton from a **global** fit

Conclusions and outlook

quarks TMDs in the proton from a **global** fit

We are finding *significant* differences between the flavors in the *TMD PDFs*.

Conclusions and outlook

MAPTMD24 will be the *first flavour dependent* extraction of unpolarized

Conclusions and outlook

quarks TMDs in the proton from a **global** fit

We are finding *significant* differences between the flavors in the *TMD PDFs*.

TMD FFs.

MAPTMD24 will be the *first flavour dependent* extraction of unpolarized

We are finding *significant* differences between different final hadrons in the

Conclusions and outlook

MAPTMD24 will be the *first flavour dependent* extraction of unpolarized quarks TMDs in the proton from a **global** fit

We are finding *significant* differences between the flavors in the *TMD PDFs*.

TMD FFs.

We are finding a weak signal between different flavors in the same final hadron.

We are finding *significant* differences between different final hadrons in the

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.14
Dy fixed target total	233	0.68
HERMES total	344	2.72
COMPASS total	1203	0.99
SIDIS total	1547	1.38
Total	2031	1.39

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.14
Dy fixed target total	233	0.68
HERMES total	344	2.72
COMPASS total	1203	0.99
SIDIS total	1547	1.38
Total	2031	1.39

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.06
Dy fixed target total	233	1.24
HERMES total	344	0.71
COMPASS total	1203	0.92
SIDIS total	1547	0.87
Total	2031	1.06

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.14
Dy fixed target total	233	0.68
HERMES total	344	2.72
COMPASS total	1203	0.99
SIDIS total	1547	1.38
Total	2031	1.39

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.43
Dy fixed target total	233	0.75
HERMES total	344	0.95
COMPASS total	1203	0.88
SIDIS total	1547	0.90
Total	2031	1.07

NNPDF + DSS

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.06
Dy fixed target total	233	1.24
HERMES total	344	0.71
COMPASS total	1203	0.92
SIDIS total	1547	0.87
Total	2031	1.06

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.14
Dy fixed target total	233	0.68
HERMES total	344	2.72
COMPASS total	1203	0.99
SIDIS total	1547	1.38
Total	2031	1.39

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.43
Dy fixed target total	233	0.75
HERMES total	344	0.95
COMPASS total	1203	0.88
SIDIS total	1547	0.90
Total	2031	1.07

NNPDF + DSS

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.06
Dy fixed target total	233	1.24
HERMES total	344	0.71
COMPASS total	1203	0.92
SIDIS total	1547	0.87
Total	2031	1.06

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.14
Dy fixed target total	233	0.68
HERMES total	344	2.72
COMPASS total	1203	0.99
SIDIS total	1547	1.38
Total	2031	1.39

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.43
Dy fixed target total	233	0.75
HERMES total	344	0.95
COMPASS total	1203	0.88
SIDIS total	1547	0.90
Total	2031	1.07

NNPDF + DSS

Data set	$N_{ m dat}$	$\chi_0^2/N_{\rm dat}$
DY collider total	251	2.06
Dy fixed target total	233	1.24
HERMES total	344	0.71
COMPASS total	1203	0.92
SIDIS total	1547	0.87
Total	2031	1.06

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.14
Dy fixed target total	233	0.68
HERMES total	344	2.72
COMPASS total	1203	0.99
SIDIS total	1547	1.38
Total	2031	1.39

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.43
Dy fixed target total	233	0.75
HERMES total	344	0.95
COMPASS total	1203	0.88
SIDIS total	1547	0.90
Total	2031	1.07

NNPDF + DSS

BACKUP

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.01
Dy fixed target total	233	1.11
HERMES total	344	2.51
COMPASS total	1203	0.99
SIDIS total	1547	1.33
Total	2031	1.39

MMHT + MAPFF

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.06
Dy fixed target total	233	1.24
HERMES total	344	0.71
COMPASS total	1203	0.92
SIDIS total	1547	0.87
Total	2031	1.06

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.14
Dy fixed target total	233	0.68
HERMES total	344	2.72
COMPASS total	1203	0.99
SIDIS total	1547	1.38
Total	2031	1.39

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.43
Dy fixed target total	233	0.75
HERMES total	344	0.95
COMPASS total	1203	0.88
SIDIS total	1547	0.90
Total	2031	1.07

NNPDF + DSS

BACKUP

Data set	Ndat	$\sqrt{\frac{2}{N_{det}}}$
	- 'dat	$\lambda_0/1$ dat
DY collider total	251	2.01
Dy fixed target total	233	1.11
HERMES total	344	2.51
COMPASS total	1203	0.99
SIDIS total	1547	1.33
Total	2031	1.39

MMHT + MAPFF

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.06
Dy fixed target total	233	1.24
HERMES total	344	0.71
COMPASS total	1203	0.92
SIDIS total	1547	0.87
Total	2031	1.06

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.14
Dy fixed target total	233	0.68
HERMES total	344	2.72
COMPASS total	1203	0.99
SIDIS total	1547	1.38
Total	2031	1.39

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.43
Dy fixed target total	233	0.75
HERMES total	344	0.95
COMPASS total	1203	0.88
SIDIS total	1547	0.90
Total	2031	1.07

NNPDF + DSS

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.01
Dy fixed target total	233	1.11
HERMES total	344	2.51
COMPASS total	1203	0.99
SIDIS total	1547	1.33
Total	2031	1.39

MMHT + MAPFF

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.06
Dy fixed target total	233	1.24
HERMES total	344	0.71
COMPASS total	1203	0.92
SIDIS total	1547	0.87
Total	2031	1.06

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.14
Dy fixed target total	233	0.68
HERMES total	344	2.72
COMPASS total	1203	0.99
SIDIS total	1547	1.38
Total	2031	1.39

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.43
Dy fixed target total	233	0.75
HERMES total	344	0.95
COMPASS total	1203	0.88
SIDIS total	1547	0.90
Total	2031	1.07

NNPDF + DSS

BACKUP

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.01
Dy fixed target total	233	1.11
HERMES total	344	2.51
COMPASS total	1203	0.99
SIDIS total	1547	1.33
Total	2031	1.39

Agreement

Similar

worsening

MMHT + MAPFF

Data set	$N_{ m dat}$	$\chi_0^2/N_{ m dat}$
DY collider total	251	2.06
Dy fixed target total	233	1.24
HERMES total	344	0.71
COMPASS total	1203	0.92
SIDIS total	1547	0.87
Total	2031	1.06

	N ³ LL			
Data set	$N_{ m dat}$	χ^2_D	χ^2_λ	χ^2_0
Tevatron total	71	1.10	0.07	1.17
LHCb total	21	3.56	0.96	4.52
ATLAS total	72	3.54	0.82	4.36
CMS total	78	0.38	0.05	0.43
PHENIX 200	2	2.76	1.04	3.80
STAR 510	7	1.12	0.26	1.38
DY collider total	251	1.37	0.28	1.65
E288 200 GeV	30	0.13	0.40	0.53
E288 300 GeV	39	0.16	0.26	0.42
E288 400 GeV	61	0.11	0.08	0.19
E772	53	0.88	0.20	1.08
E605	50	0.70	0.22	0.92
DY fixed-target total	233	0.63	0.31	0.94
HERMES total	344	0.81	0.24	1.05
COMPASS total	1203	0.67	0.27	0.94
SIDIS total	1547	0.70	0.26	0.96
Total	2031	0.81	0.27	1.08

7

Drell-Yan

Fixed-target low-energy DY

RHIC data

LHC and Tevatron data

Fixed-target low-energy DY

RHIC data

LHC and Tevatron data

Fixed-target low-energy DY

RHIC data

LHC and Tevatron data

HERMES data **COMPASS** data

7

Fixed-target low-energy DY

RHIC data

LHC and Tevatron data

HERMES data **COMPASS** data

7
BACKUP - datasets included

Fixed-target low-energy DY

LHC and Tevatron data

HERMES data **COMPASS** data

Total: 2031 fitted points

7